
Vertical Profiling: Evaluating Computer Architectures
using Commercial Applications

Peter F. Sweeney
IBM Thomas J. Watson Research Center

pfs@us.ibm.com

Matthias Hauswirth
University of Lugano, Switzerland

Matthias.Hauswirth@unisi.ch

Amer Diwan
University of Colorado at Boulder

diwan@cs.colorado.edu

ABSTRACT
This paper demonstrates how a performance analysis tech-
nique, vertical profiling, can be used to determine the cause
of a performance anomaly: a gradual increase in instruc-
tions per cycle over time. Understanding the cause required
trace-information from multiple layers of the execution stack
(application, Java virtual machine, and hardware), expert
knowledge in each layer, and repeated application of the
process. To evaluate today’s complex software and hard-
ware systems requires sophisticated performance analysis
techniques. Nevertheless, as future software and hardware
systems become more complex, these performance analysis
techniques must be automated.

1. INTRODUCTION
Using commercial applications to evaluate computer ar-

chitectures has always been an onerous task, requiring both
time and expertise. Time is required to identify which com-
ponents of the application and the execution environment
are affecting the underlying hardware. Expertise in a partic-
ular component is required to understand the component’s
affect on the underlying hardware. Nevertheless, evalua-
tion and performance analysis is becoming more critical,
because performance improvements are no longer available
from hardware alone: due to power and thermal constraints,
clock frequencies are not increasing at their previous rates
of doubling every eighteen months.

Unlike scientific applications, commercial workloads have
a complicated software stack. Consider the Java software
stack that executes on top of a Java virtual machine, an op-
erating system (OS) and hardware. The Java software stack
typically consists of the application, one or more frame-
works, an application server, and a plethora of libraries (ap-
plication, framework, language and native). The complexity
of this execution stack (software and hardware), and the in-
teractions between the layers of the execution stack makes
evaluating computer architectures difficult, because it is not
always obvious what layer in the execution stack and what
component in that layer is causing the effect on the under-

This paper appeared and was presented at the Ninth Workshop on Com-
puter Architecture Evaluation using Commercial Workloads (CAECW-9),
February 12, 2006, Austin, Texas, USA.

lying hardware. In contrast, the software stack for scientific
applications is simpler, consisting of the application, per-
haps a library, that sit on top of an OS and hardware.

Consider the Java virtual machine (JVM). Most JVM’s
have a number of components, including: a garbage collec-
tor (GC) that manages memory deallocation and supports
the Java language’s location transparency of data, a dy-
namic compiler that compiles Java code at runtime, and
an adaptive optimization system (AOS) [2] that determines
when to optimize a method and at what optimization level.
These three components place different demands on the un-
derlying hardware. Therefore, knowing that the JVM places
demand on the underlying hardware is not sufficient unless
the impact of the individual JVM components are teased
apart.

Traditional approaches to evaluating computer architec-
tures with commercial applications usually focus on only one
layer in the execution stack. Although helpful, looking at
only one layer in isolation does not provide the complete
picture of performance. We have found that in many cases
the temporal performance of a workload can only be under-
stood by analyzing the interactions between layers of the
execution stack [11]; that is, the interactions between the
software stack, JVM, OS and hardware must be analyzed as
a whole and not independently.

In addition, traditional approaches to performance analy-
sis assume that metrics are “constant” when the application
reaches its “steady-state”. Our experience has shown that
this is not true. As illustrated in Figure 1, a metric such
as IPC (instructions per cycle) is rarely, if ever, flat for long
periods of time. It is precisely a metric’s change over time
that we are interested in understanding to evaluate the un-
derlying hardware.

This paper demonstrates how vertical profiling can be used
to better understand the interactions between the various
layers of the execution stack and the demands they place
on the underlying hardware. Section 2 presents the com-
plexity of the execution stack for commercial applications.
Section 3 describes vertical profiling. Section 4 presents a
case study illustrating how vertical profiling was used to an-
alyze the temporal system performance. Section 5 discusses
related work and why traditional tools are not sufficient to
evaluate computer architectures with commercial applica-
tions. Section 6 presents conclusions. Section 7 discusses

1



Figure 1: Instructions per cycle (IPC) over time for a collection of Java benchmarks. All signals were gathered
on a PowerPC POWER4 processor running AIX 5.1.

future work.

2. MOTIVATION
Commercial applications are increasingly constructed by

gluing together software taken from third party developed
libraries and frameworks and executed on top of a com-
plex runtime environment (JVM) that automatically pro-
vides services such as garbage collection and dynamic op-
timization. Although the third-party software typically has
well-defined functional specifications, performance specifica-
tions are poorly-defined, if existent at all. In addition, how
the Java software stack interacts with the JVM services is
not always obvious or predictable by the application devel-
oper. Therefore, many performance problems occur from
the interaction between the application and the indepen-
dently developed software, and between the Java software
stack and the JVM.

Consider the JVM and how an application interacts with
three of its components: a garbage collector (GC) that man-
ages memory deallocation and supports the Java language’s
location transparency of data; a dynamic compiler that com-
piles Java code at runtime; and an adaptive optimization
system (AOS) [2, 3] that determines when a method should
be compiled and at what level of optimization. Each compo-
nent that is exercised by a Java application can have an ef-
fect on the underlying hardware. For instance, the allocation
and referencing behavior of the application influences how
the garbage collector traverses and reclaims objects, which,
in turn, influences page faults and cache misses, which ulti-
mately influences overall performance. Because of such in-
teractions, the complexity of analyzing the performance of
a modern application grows exponentially with the number
of components exercised in the application.

Furthermore, individual components can have radically

different impact on underlying hardware. Consider icache
miss rates. For example, a garbage collector is typically
implemented as a tight loop that fits into the icache and
thus has low cache miss rates. In contrast, the AOS executes
infrequently and, during each execution, executes for a short
duration of time resulting in high cache miss rates.

The dynamic compiler has a range of icache miss rates
that falls between the AOS and GC depending on the size
of the method that it is optimizing and the level of optimiza-
tion. Compiling a small method at a low level of optimiza-
tion has a longer duration than a AOS thread’s execution
and thus will have lower icache miss rates due to temporal
cache locality. Compiling a large method at a high level of
optimization may span multiple scheduling quanta, during
which the compiler will time share the processor with other
Java threads that will compete for cache lines in the icache
resulting in higher icache miss rates than the GC.

Therefore, understanding a JVM’s impact on the icache
miss rates requires that the individual components of the
JVM layer are distinguished.

The task of analyzing the interaction between components
becomes more difficult if those interactions change during an
application’s execution. For example, the interactions may
change over time due to a phase shift in the application, or
due to the dynamic compiler optimizing code.1 Thus, cap-
turing the temporal behavior of a modern system is crucial
to understanding its performance. This temporal behavior
can be modeled as a sequence of observed events, called a
trace.

Therefore, knowing how layers in the execution stack and
how components in those layers interact and affect the un-

1A dynamic compiler usually has multiple levels of opti-
mization that may be applied successively to a method as
the total time the method executes increases.

2



derlying hardware requires trace information across the lay-
ers of the execution stack and requires that the information
is differentiated by each layer’s components.

3. VERTICAL PROFILIING
This section provides background information on vertical

profiling [11, 9], a performance analysis technique that helps
to identify which layer in the execution stack and which
component within that layer is affecting the performance of
a computer architecture. Vertical profiling uses traces of
metrics from different components of the different layers of
the execution stack. Examples of metrics are:

Instructions per cycle. Hardware layer, overall perform-
ance.

Cache misses. Hardware layer, memory hierarchy compo-
nent.

Page faults. OS layer, virtual memory management com-
ponent.

Memory map calls. OS layer, virtual memory manage-
ment component.

Compilations at optimization level 3. JVM layer, dy-
namic compiler component.

Bytes allocated. JVM layer, memory allocation compo-
nent.

Transactions completed per minute. Application layer.

The trace for a particular metric is called a signal and
can be plotted as a graph where the x-axis is time and the
y-axis represents the metric’s value. We typically aggregate
metrics over time intervals. For Java applications, we aggre-
gated metric values at every Java thread switch where the
scheduling time quantum is 10 milliseconds [11, 15].2 Each
point in a signal represents the metric’s aggregate value for
that time interval. Figure 2 illustrates three such signals for
a Java application.

Our experience has taught us that different Java threads
and JVM services have different performance characteris-
tics, and that partitioning signals by Java threads and JVM
services is important for evaluating computer architectures.

Given a set of signals, vertical profiling consists of five
steps:

1. Identify a performance anomaly as an interval in a tar-
get metric’s signal. For example, a change in a metric’s
value over time,

2. Correlate the corresponding intervals in the signals of
other metrics with the performance anomaly.

3. Identify a causal metric that correlated highly with the
target metric.

4. Validate the causal metric.

5. Iterate using a causal metric as the performance anom-
aly.

Because correlation does not always imply causality, the
third step requires reasoning to eliminate metrics that have
accidental correlation with the target metric. For example,
if the number of instructions that complete per cycle goes

2For C and Fortran scientific programs, metric values were
aggregated at 10 millisecond intervals defined by timer in-
terrupts [5].

down, the number of transactions that complete per minute
would be expected to go down proportionally, but the re-
duction in transactions completing per minute would not be
the cause for the drop in IPC.

A vertical profiling study can require the collection of a
large number of metrics. It is often impractical or even
impossible to collect all these metrics in a single execution
of the system for the following reasons:

• Not all metrics can be captured together. For example,
the hardware performance monitors typically have a
small number of registers (on the order of 10) that
count the number of times an event occurs; however,
modern processors have hundreds of events.

• Even if all the metrics could be captured together, the
perturbation to the system would be prohibitive.

• Finally, performance analysis is an iterative process:
signals for metrics may not be collected at the same
time.

Nevertheless, reasoning across traces is nontrivial, because
even two runs of a deterministic application using hte same
inputs yields slightly different behavior due to non-determin-
ism in the OS an JVM. We have applied a technique from
speech recognition, dynamic time warping (DTW), to align
traces. Aligning several traces allows us to correlate metrics
that had to be collected in different executions of the system.
Although initial results [10] have found that DTW works
well for aligning traces, we continue to do research in this
area.

4. USING VERTICAL PROFILING
In this section, we use vertical profiling to understand how

a commercial application and its execution environment af-
fect the underlying computer architecture. The represen-
tative commercial application that this section uses is jbb,
a modified version of the SPECjbb2000 [7] (Java Business
Benchmark) that evaluates the performance of server-side
Java by modeling a three-tier application server. For bench-
marking purposes, jbb was modified to run for a fixed num-
ber of transactions (120,000 for this experiment) instead of
running for a fixed amount of time. All of our experiments
were performed on a POWERPC POWER4 1.2 GHz, 64-bit
microprocessor running AIX 5.1.

When we looked at the IPC signal for jbb, we noticed that
the IPC ’s value gradually increases over time. The top graph
in Figure 2 illustrates this phenomena, where the x-axis is
time and the y-axis is the IPC value. The signal in the
top graph of Figure 2 is a prefix of the worker thread that
starts after the main thread.3 We use the behavior of this
signal as a performance anomaly and use vertical profiling
to determine its cause.

3In addition to being an interval, the IPC signal in the top
graph of Figure 2 differs from the IPC signal for jbb in Fig-
ure 1 (the eighth graph from the top), because we have elim-
inated another performance anomaly, dip before GC, that
was also resolved using vertical profiling [11]. A GC is rep-
resented as a gap in the signal when the GC is runing and,
in Figure 1, the dip before GC can be seen as the segments
of the signal that decrease just before the gaps.

3



4.1 Investigation
Given the performance anomaly, we first correlated the

hundreds of POWER4 hardware performance monitor (HPM)
signals with the performance anomaly [15] to identify the
highly correlated signals as potential candidates for the cause
of the performance anomaly. Although there were a number
of potential candidates, the load/store unit flushes per cy-
cle (LsuFlush/Cyc) signal stood out as a possible cause. The
other potential candidates were determined, by examination
and reasoning, to not be a cause of the performance anom-
aly. For example, loads per cycle correlated highly with IPC,
however, a reduction in the number of loads does not cause
a reduction in IPC, because loads are a subset of all instruc-
tion. As pointed out in Section 3, correlation may not imply
causality. In vertical profiling, correlation between two sig-
nals provides the starting point to look for causality.

Figure 2: Behavior of jbb’s worker thread over time.

The top two graphs in Figure 2 illustrate a visual cor-
relation between the IPC and the LsuFlush/Cyc signals: as
IPC increases, LsuFlush/Cyc decreases. The left scatter plot
of Figure 3 correlates LsuFlush/Cyc with CPI cycles per in-
struction, the inverse of IPC. The plot shows that overall
higher flush rates correlates with higher CPI rates. Fur-
thermore, the cross correlation coefficient of 0.726 indicates
a significant correlation, which confirms the visual correla-
tion.

Talking to hardware experts, we learned that a pipeline
flush happens when the POWER4 speculatively reorders two
data dependent memory access instructions. A POWER4

CPI

L
su

F
lu

sh
/C

yc

L
su

F
lu

sh
/C

yc

% unoptimized MonitorEnter

0.726 0.963

Figure 3: Correlation of jbb’s worker thread’s sig-
nals.

Metric Baseline Opt 0

IPC 0.348 0.508
LsuFlush/Cyc 0.053 0.001

Table 1: The aggregate measurement of instructions
per cycle (IPC) and load/store unit flushes per cycle
(LsuFlush/Cyc) for the baseline and optimization level
0 JIT compilers.

is a speculative, out-of-order superscalar machine that has
two load/store functional units and issues instructions in
groups of up to five instructions. Intuitively, at each cycle,
hardware looks in parallel in each load/store units’ issue
queue for a memory instruction to execute. If two memory
access instructions are data dependent, but are issued on
different load/store units, the hardware may speculatively
execute the dependent instruction and violate the data de-
pendency causing a misspeculation. When a misspeculation
is detected, the hardware flushes the instruction pipeline,
and reschedules the two dependent instructions to the same
load/store issue queue to prevent the misspeculation. Nev-
ertheless, flushing the pipeline is an expensive operation.

4.2 Iterate
Although the LsuFlush/Cyc metric explains the cause of

the performance anomaly at the hardware layer, only look-
ing at hardware layer metrics provided no insight into which
component in the software stack is causing the flushes.

Our first instinct was to look at metrics at the applica-
tion layer to determine if the application’s behavior changed
over time. In particular, we looked at the mix of transac-
tions to determine if the performance anomaly was due to
transactional behavior. With an application layer metric,
we confirmed that the mix of transactions over time was
relatively fixed and did not correlate with IPC. Thus, we
concluded that the performance anomaly was not due to
the transaction behavior, but due to some other lower-level
behavior.

Using our Java virtual machine (JVM) expertise, we next
focused on the JVM layer of the software stack, and within
this layer the adaptive optimization system (AOS). The JVM
that we used was Jikes RVM [12], an open source, research
virtual machine. The AOS monitors an application’s run-
time behavior and recompiles methods over time at higher
levels of optimization as the amount of execution time spent
in that method increases. The first time a method is ex-
ecuted, the AOS compiles the method at an unoptimized
baseline level of optimization. Baseline compilation ensures
fast compilation times, but sacrifices code quality. For ex-
ample, baseline compiled code explicitly models the Java
byte code representation of an expression stack as loads and
stores to memory. All other higher levels of optimization,
use register allocation to keep the expressions in registers
whenever possible, instead of memory.

Jikes RVM supports a JIT (just-in-time) compiler con-
figuration where the first time a method is executed, it is
compiled at a particular optimization level and never com-
piled again. Table 1 presents the difference in IPC and
LsuFlush/Cyc when using the baseline (Baseline) and op-
timization level 0 (Opt 0) JIT’s for one of the SPECjvm
benchmarks. These values are aggregated over the complete

4



execution of the benchmark. The important thing to notice
is that IPC for the optimization level 0 is 46% higher than
the baseline and that the number of LsuFlush/Cyc is almost
nonexistent for the optimization level 0, but significant for
the baseline: one in every 20 cycles is involved in flushing
the pipeline! With this insight, our hypothesis is that the
AOS behavior of initially compiling methods at baseline and
only over time recompiling them at higher levels of optimiza-
tion was causing the initial high number of pipeline flushes
that then decreased. Although the aggregate information
illustrates the impact of different optimization levels on IPC
and LsuFlush/Cyc, the information provides no insight into
whether there is a high correlation between the amount of
optimized code that is executed and IPC. The correlation is
needed to prove our hypothesis.

To test this hypothesis, we measured the amount of time
spent in optimized code and unoptimized code over time.
Measuring this information directly would add overhead (and
perturbation) to every call and return, and thus, we settled
on an indirect way of capturing the information. Instead, we
identified a JVM lock acquisition metric that approximated
this information. The Java compiler issues MonitorEnter

bytecode instructions at each call to a synchronized method
and at each entry into a synchronized block. Jikes RVM’s
baseline compiler expands MonitorEnter into a call to a
lock acquisition method and the optimizing compiler ex-
pands MonitorEnter into an inlined body of a different lock
acquisition method. We added two JVM metrics: Unopt-
MonitorEnter and OptMonitorEnter. UnoptMonitorEnter is
incremented in the lock acquisition method used by base-
line compiled code, while OptMonitorEnter is incremented by
the inlined lock acquisition method used in optimized code.
These JVM metrics told us how many MonitorEnters were
executed in unoptimized and in optimized code. Because
jbb executes many synchronized methods throughout its ex-
ecution, these counts provide us with useful information.
For benchmarks that do not execute synchronized methods
throughout their execution, other metrics would be needed
to determine the time spent in optimized and unoptimized
code.

The bottom two graphs in Figure 2 illustrate a visual cor-
relation between the LSUFlush/Cyc and UnoptMonitorEnter
signals: as the LSUFlush/Cyc signal decreases so does the
UnoptMonitorEnter signal. The right scatter plot of Figure 3
correlates the LsuFlush/Cyc with the percentage of unopti-
mized MonitorEnters. Because the data points in this plot
almost form a straight line it seems highly likely that the
execution of unoptimized code is strongly correlated to Lsu-
Flush/Cyc (correlation coefficient 0.963), which in turn is
correlated to Cyc/InstCmpl.

Thus, our investigation determined that the performance
anomaly in jbb, IPC increases gradually over time, is caused
by the AOS: over time as the AOS optimizes more and more
methods the optimized code reduces pipeline flushes and
improves IPC.

4.3 Validation
We validated our explanation for cause of the performance

anomaly by using Jikes RVM’s JIT configurations to disable
the AOS and to use either the baseline or optimizing com-
piler exclusively without any recompilation. If our explana-
tion is correct then (i) at the beginning of the run, the AOS
has no methods optimized and thus its IPC metric would be

similar to the run with the baseline compiler; and (ii) at the
end of the run the AOS has optimized all the hot methods
and thus its IPC metric would be similar to the run with
the optimizing compiler. We found both properties to be
true, thus validating our explanation. As further evidence
we found that the runs that used the baseline and optimizing
JIT compilers did not exhibit the gradual increase pattern,
indicating that the AOS is the cause of the pattern.

4.4 Discussion
There are a number of lessons that can be learnt from our

example. First, trace-information was essential to identify
the performance anomaly. Using only aggregate-information
could never have identified the performance anomaly be-
cause the IPC changed gradually over time. Second, corre-
lating trace-information with the performance anomaly was
essential to both disprove hypotheses (e.g., transactional be-
havior was not the cause) and to quickly focus on a few
potential candidates from a large set of signals (e.g. iden-
tify the LsuFlush/Cyc). Even though there are hundreds of
POWER4 hardware performance monitor events, correla-
tion helped us to quickly identify the LsuFlush/Cyc metric
as a potential candidate for causing the performance anom-
aly. Third, performance analysis is an iterative process.
The vertical profiling process had to be reapplied when a
new causal metric was found, until the performance anom-
aly could be fully explained. In our example, two iterations
were required to find the two causal metrics: LsuFlush/Cyc
and UnoptMonitorEnter. Fourth, multiple layers of the ex-
ecution stack may need to be examined to understand a
performance anomaly. Looking only at the metrics in one
layer of the execution stack does not provide the complete
picture of performance. Finally, each layer of the execution
stack and even different components in a layer require expert
knowledge. Understanding the meaning of the LsuFlush/Cyc
metric was essential to determine where to look in the soft-
ware stack to find the cause of the performance anomaly.
Understanding how the adaptive optimization system works
was essential to determining what metrics to use in JVM
layer.

5. RELATED WORK
Programmers have been using general purpose profiling

tools for at least three decades to understand and improve
the performance of their applications. In this section, we
argue that information provided by these prior tools is in-
adequate for understanding the performance of commercial
applications. Specifically, to understand the performance of
commercial applications, the information that is collected
about the application’s execution must satisfy the following
requirements: (i) not lose relevant information, and (ii) dis-
tinguish between the different layers of the execution stack
(hardware and software), and their components.

5.1 Inadequacy of Aggregate-Information
Aggregate-information for a particular metric is a single

value that aggregates (e.g. averages or counts) the behavior
of that metrics throughout the execution of an application.
Profilers, such as the commonly-used grpof [14], compute
aggregate information by reporting the time spent in each
routine (or caller-callee pair). The time spent in a routine is
aggregated because it combines information from every call
to that routine into a single value.

5



Unfortunately, aggregate-information may not satisfy ei-
ther of the above two requirements: (i) aggregate-information
loses relevant information by not capturing any change in
behavior over time; (ii) aggregate-information is usually col-
lected from only some of the relevant subsystems (e.g., grpof
just computes information from the application level).

5.2 Inadequacy of Trace-Information
Trace-information captures a metric’s value in discrete in-

tervals over time. At one extreme, trace data can capture
a metric’s value every time an event occurs, such as every
time an instruction executes or a memory address is read. At
the other extreme, trace-information for a metric can be the
count of the number of times an event occurs for a given time
interval, for example, every ten milliseconds. Aggregate-
information can be thought of as trace data where the time
interval is the length of the application’s execution.4 There
are a number of tools that collect trace-information. For
example, qpt [4], eel [13], atom [8], or shade [6] capture in-
struction and address traces. In addition, JVMPI [1] is Java
virtual machine based that captures language level events
such as method enter and exit, and object allocation. Be-
cause trace-information captures a metric’s value over time,
requirement (i) is satisfied as long as the time interval be-
tween which a metric’s values are recorded is small enough.

In the past, trace-information has not satisfied require-
ment (ii). Typically, trace-information for different layers of
the execution stack are collected independently and there-
fore can not be correlated because it is not clear what el-
ement in the trace of one layer can be correlated with an
element in the trace of another layer of the execution stack.
For example, existing general purpose tracing tools such as
qpt, eel, atom, or shade generate trace-information from
only some layers of the execution stack; for example, atom is
invaluable for generating traces from the application layer.
However, these tools typically do not include events from
the operating system (e.g. page faults) or from the hard-
ware subsystems (e.g., flush of the icache). Thus, using these
tools the programmer gets an incomplete picture of their ap-
plication’s behavior impact on the underlying hardware. In
our experience, trace-information from a subset of the layers
in the execution stack is inadequate for understanding the
performance of commercial applications.

6. CONCLUSIONS
This paper used a performance anomaly as an example to

illustrate how one approach, vertical profiling, was used to
determine the cause of the performance anomaly. Our ex-
ample demonstrates that using commercial applications to
evaluate and understand computer architectures is a difficult
task. Determining the cause required looking at multiple
layers of the execution stack (hardware, JVM and appli-
cation). In each layer, expert knowledge is required to be
able to determine if a metric in that layer is the cause of a
performance anomaly.

4There is actually another dimension, sampling, that does
not require exhaustive trace-information; that is, the occur-
rence of every event of a metric may not be accounted for in
the sampled trace-information. Sampling, and all of its vari-
ants, takes advantage of the 90-10 rule that 90% of the time
the application is doing the same thing, and therefore the
probability that sampling will identify what is being done
the majority of the time is high.

Our example, demonstrated why both the identification
and the solution of the performance anomaly required trace-
information, because the analysis process needed to rea-
son about behavior as it changes over time. Aggregate-
information alone would not suffice. Even with trace-informa-
tion, techniques are needed to determine which metric is
causing the performance anomaly. Vertical profiling pro-
poses using correlation to identify potential candidates for
the cause. Currently a human being needs to inspect the set
of candidates to determine which are causal.

The performance anomaly required multiple iterations of
the vertical profiling process. Initially, the LsuFlush/Cyc
metric was identified as causing the performance anomaly
at the hardware level, but did not identify what was causing
the performance anomaly at the software level. Neverthe-
less, LsuFlush/Cyc did give us insight into where to look in
the software stack. Our initial focus, the application layer,
turned out to be incorrect; however, this was quickly vali-
dated with correlation. Our second attempt found the cause
of the performance anomaly in the adaptive optimization
system of the Java virtual machine.

Evaluating computer architectures is difficult because the
complexity of the software stack and hardware is continu-
ing to increase. Commercial applications are increasingly
using software developed by third parties and the impact
of the interaction between the applications and third party
software on the behavior of computer architectures is not
always readily known. To boost performance, current mi-
croprocessors are adding simultaneous multithreading and
multiple cores per chip without knowing how the interac-
tion of multiple applications that run on the same processor
impact performance due to resource sharing. This example
has demonstrated that new techniques, such as vertical pro-
filing, have to be developed to be able to evaluate modern
computer architectures.

7. FUTURE WORK
There is no question that sophisticated tools are needed

to understand today’s complex software and hardware sys-
tems. Even with the correct tools, evaluating computer ar-
chitectures using commercial applications is hard, because
expert knowledge is required in may domains and a tremen-
dous amount of manual effort is required to track down per-
formance anomalies. Our goal is to automate performance
analysis by capturing expert knowledge so that it can be au-
tomatically applied to understand performance anomalies
and to automate the manual steps that are performed by
performance analysts. We have commenced this work by
starting to automate vertical profiling [10]. Specifically, we
are developing techniques to automatically aligning traces
and to automatically or semi-automatically correlate met-
rics.

8. ACKNOWLEDGEMENTS
The authors would like to thank Michael Hind for his feed-

back on this paper. This work was supported by Defense Ad-
vanced Research Project Agency Contract NBCH30390004,
NSF CSE-0509521, NSF Career CCR-0133457, and a gift
from Intel. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsors.

6



9. REFERENCES
[1] Java virtual machine profiler interface (jvmpi).

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html.

[2] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in the
Jalapeño JVM. 35(10):47–65, October 2000. Proceedings of
the 2000 ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA’00).

[3] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. A survey of adaptive
optimization in virtual machines. Proceedings of the IEEE,
92(2):449–466, Feb. 2005.

[4] Thomas Ball and James R. Larus. Optimally profiling and
tracing programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(4):1319–1360, 1994.

[5] Călin Caşcaval, Evelyn Duesterwald, Peter F. Sweeney, and
Robert W. Wisniewski. Multiple page size modeling and
optimization. In Proceedings of the Fourteenth
International Conference on Parallel Architectures and
Compiler Technology (PACT05). IEEE, Sep. 2005.

[6] Robert Cmelik and David Keppel. Shade: A fast
instruction-set simulator for execution profiling. ACM
SIGMETRICS Performance Evaluation Review,
22(1):128–137, May 1994.

[7] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark).
http://www.spec.org/jbb2000.

[8] Alan Eustace and Amitabh Srivastava. Atom: A flexible
interface for building high performance program analysis
tools. In USENIX Winter, pages 303–314, 1995.

[9] Matthias Hauswirth. Understanding Program Performance
Using Temporal Vertical Profiling. PhD thesis, University
of Colorado at Boulder, 2005.

[10] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and
Michael Mozer. Automating vertical profiling. In
Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA05). ACM Press,
October 2005.

[11] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and
Michael Hind. Vertical profiling: Understanding the
behavior of object-oriented applications. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA04). ACM Press, October 2004.

[12] Jikes Research Virtual Machine (RVM).
http://www.ibm.com/developerworks/oss/jikesrvm.

[13] James R. Larus and Eric Schnarr. Eel:
Machine-independent executable editting. In Proceedings of
the SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI95). ACM Press, June
1995.

[14] P. Kessler S. Graham and M. McKusick. Gprof: A call
graph execution profiler. Proceeedings of the SIGPLAN ’82
Symposium on Compiler Construction, 17(6):120–126, June
1982.

[15] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon,
Perry Cheng, Amer Diwan, David Grove, and Michael
Hind. Using hardware performance monitors to understand
the behavior of Java applications. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium
(VM’04), May 2004.

7


