
The Need for a Whole-System View of Performance

Matthias Hauswirth
University of Colorado at Boulder

Matthias.Hauswirth@colorado.edu

Peter F. Sweeney
IBM Thomas J. Watson Research Center

pfs@us.ibm.com

Amer Diwan
University of Colorado at Boulder

diwan@colorado.edu

Michael Hind
IBM Thomas J. Watson Research Center

hindm@us.ibm.com

ABSTRACT
Middleware usually runs on top of a powerful execution
platform. Often that platform includes extensive runtime
libraries, a virtual machine, an operating system, and mod-
ern complex hardware.

The understanding of middleware performance is compli-
cated by intricate interactions between the application, the
middleware, and the components of the underlying platform.

The functional interfaces of the components of such a plat-
form are clearly defined. They range from the API speci-
fication, over the virtual machine specification, the system
call interface, to the processor’s instruction set architecture.
The functionality of a system component can be understood
by just looking at that component’s functional specification.

The performance of a system component, on the other
hand, can often not be understood in isolation. This is be-
cause performance interactions between components can be
very intricate, non-linear, and involve unpredictable delays.

We propose temporal vertical profiling [1] as an approach
for whole system performance understanding. Temporal ver-
tical profiling captures the temporal system behavior on all
layers, and of all components, of the system. A trace of
values for performance metrics from system components is
captured and analyzed to identify correlations between such
metrics. Correlation is the first step in the identification
of causal releationships between metrics and components.
And these causal relationships are the fundamental building
blocks for performance understanding.

1. INTRODUCTION
Modern applications often are built on top of middleware

for distributed communication, such as CORBA Object Re-
quest Brokers (ORB) [6], Java Remote Method Invocation
(RMI) [5], or the Simple Object Access Protocol (SOAP) [8],
and they make use of component technologies such as En-
terprise Java Beans (EJB) [4] or the CORBA Component

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Model (CCM) [7].
The overall performance of such an application is depen-

dent on the performance of all layers in the execution stack
of the system (Figure 1). To decide which middleware and
component technology to use, the performance of different
implementations can be compared by measuring key perfor-
mance metrics (usually some form of latency and through-
put) running the same application on the same system (all
the way from the Java library to the hardware layer), just
interchanging the different implementations of the middle-
ware and component technology layer (Figure 1).

ApplicationComponent Systems &MiddlewareJava LibrariesVirtual MachineNative LibrariesOperating SystemHardware
Figure 1: Layers of the Execution Stack.

But the overall system performance is more than the sum
of its parts. It is influenced by various non-functional in-
teractions between all these layers. A specific piece of ap-
plication or middleware code can have bad performance be-
cause of reasons that are not directly caused by that code.
Such reasons include dynamic optimization decisions in the
runtime compiler, the memory management policy of the
garbage collector, generated machine code leading to mis-
speculation in the processor, or interactions with other code
executing in a different thread at the same time. To deter-
mine the overall performance of a system, it is sufficient to
measure the key performance metrics. But to understand
the reasons for good or bad system performance , one needs
to study the performance interactions between the various
layers of the system. In [1] we introduce temporal vertical
profiling as an approach to understand such performance
interactions between layers of the system.

1

2. TEMPORAL VERTICAL PROFILING
A computer system can be considered a state machine,

with various kinds of events leading to different states. Each
component in each layer emits different kinds of events, such
as: instruction completions and cache misses in the proces-
sor, page faults and context switches in the operating sys-
tems, object allocations, garbage collections, and runtime
compilations in the virtual machine, object serializations
and distributed method invocations in the middleware, and
business transaction completions and abortions in the ap-
plication.

Temporal vertical profiling is an approach to whole-system
performance understanding by discovering the causality re-
lationships between the behavior of different layers. A whole-
system event trace (the sequence of all events observed in
all layers) is aggregated into a set of time series, one time
series per performance metric of interest. Figure 2 shows
a whole-system event trace (different height pins represent
events happening on different system layers), where one
event type (the red pins) corresponds to the aggregation
interval boundaries (for each aggregation interval, there will
be one data point in the time series). The figure shows two
time series (for metrics m1 and m2) created from the event
trace by counting two different types of events.

Whole-SystemEvent Trace Time Series
t

t

m1

t
m2

m1

m2Correlation
Figure 2: From Event Trace to Time Series.

Examples of performance metrics are IPC (instructions
completed per cycle), object allocations per second, or trans-
action abortions per transaction completed. The time series
are created by aggregating (counting) events over intervals.
For example, all transaction completions and transaction
abortions are counted for each scheduling time slice.

Figure 2 also shows a scatter plot of the two metrics, in-
dicating that the two time series are correlatated. If two
time series are temporally correlated, then there is a chance
that one time series is influencing the other. For example, if
the IPC gradually drops over time, and the cache miss rate
gradually increases over time, we can conclude that there
is a chance that the drop in IPC is caused by the increase
in cache miss rate. This leads to the cause of the problem:
if we want to improve the processor utilization (IPC), we
should try to improve the cache performance.

We have successfully applied the temporal vertical profil-
ing approach in [1], discovering different causes of bad pro-
cessor utilization. All of these studies involved performance
metrics on multiple layers of the system. This indicates that
it is necessary to analyze all layers for an understanding of
whole-system performance.

3. PERFORMANCE EXPLORER
The number of different metrics (and thus time series) to

analyze can be large. Capturing all aspects of interest in a
modern processor alone can already require several hundred
metrics. Manually finding causality relations in such a
large number of time series is very labor intensive, thus it is
crucial to automate this process as much as possible.

We have developed Performance Explorer, a tool to visu-
alize and analyze time series of performance metrics. Per-
formance Explorer is a platform which can be extended to
provide support for new types of data, new kinds of visu-
alizations, and support for finding causality relationships.
It provides a domain-specific language for filtering data and
for computing metrics derived from other metrics (e.g. com-
puting IPC given instructions completed and cycles). Per-
formance Explorer uses a space-efficient self-defining data
format, where the meta data of each trace defines the actual
trace contents. This allows the use of Performance Explorer
on traces that contain previously unknown event types. This
means that the performance of new kinds of applications,
middleware, component systems, or other layers providing
previously unknown event types, can be analyzed without
any changes to Performance Explorer.

We have successfully used Performance Explorer in [1] to
explain unexpected performance phenomena of several Java
benchmarks running on the Jikes RVM [3] virtual machine
on AIX on a POWER4 [2] processor, and we are currently
working on adding support for automating the detection of
causality relationships where possible.

4. CONCLUSIONS
The execution stack of modern systems consists of many

layers, where the middleware and component system are just
one such layer. Understanding the performance of a system
requires an understanding of the causality relationships be-
tween those layers. Temporal vertical profiling is a way to
find such relationships and thus further the understanding
of system performance.

5. REFERENCES
[1] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and

Michael Hind. Vertical profiling: Understanding the
behavior of object-oriented applications. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM Press, October 2004.

[2] IBM. Power4 system microarchitecture.
http://www-1.ibm.com/servers/eserver/pseries/hardware/-
whitepapers/power4.html,
2001.

[3] Jikes Research Virtual Machine (RVM).
http://www.ibm.com/developerworks/oss/jikesrvm.

[4] Sun Microsystems. Enterprise JavaBeans specification, v2.1.
http://java.sun.com/products/ejb/docs.html.

[5] Sun Microsystems. Java Remote Method Invocation (RMI).
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/.

[6] Object Management Group (OMG). Common Object
Request Broker Architecture (CORBA/IIOP), v3.0.3.
http://www.omg.org/docs/formal/04-03-12.pdf.

[7] Object Management Group (OMG). CORBA Components,
v3.0. http://www.omg.org/docs/formal/02-06-65.pdf.

[8] W3C. Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/soap/.

2

