
LagAlyzer:
A latency profile analysis and visualization tool

Andrea Adamoli
University of Lugano
Lugano, Switzerland

Email: andrea.adamoli@usi.ch

Milan Jovic
University of Lugano
Lugano, Switzerland

Email: milan.jovic@usi.ch

Matthias Hauswirth
University of Lugano
Lugano, Switzerland

Email: matthias.hauswirth@unisi.ch

Abstract—Many computer systems are interactive in some way,
that means they are used by human users. A human user perceives
the performance of a computer system primarily in terms of its
response time. If a system does not respond to a user’s input, such
as a key press, a mouse motion, or a gesture on a touch screen,
within roughly 100 ms, a user perceives the system as sluggish.

Developers of interactive software and systems thus are inter-
ested in keeping response times below this perceptibility threshold.
Existing tools allow the measurement of interactive response
times, and the tracing of application behavior. In this paper
we present a tool, LagAlyzer, which analyzes and visualizes
the information gathered by such latency measurement tools.
LagAlyzer enables the characterization of perceptible lag, for
example by quantifying to what degree perceptible performance
was caused by synchronization bottlenecks, by garbage collection,
by the runtime libraries, or by the application. We use LagAlyzer
to characterize the perceptible latency found in commonly used
interactive Java applications. We believe that this is the first study
giving insight into why interactive Java applications sometimes are
perceived as sluggish.

I. INTRODUCTION

Interactive GUI applications are prevalent. Besides the tradi-
tional productivity applications running on personal computers,
they span the entire spectrum from powerful special-purpose
scientific visualization tools all the way to applications running
on mobile devices. Given the software engineering benefits of
managed languages, many of these applications are running on
managed runtime environments such as Java.

Researchers in human-computer interaction have long shown
that the aspect of performance that matters most for interactive
applications is the lag perceptible by users. Shneiderman [11]
showed that the lag in handling user events can induce frus-
tration, annoyance, and anger, and that it significantly affects
user productivity [10], and he finds that a lag beyond 100 ms
is perceptible by users. MacKenzie and Ware [7] find that
user performance in virtual reality environments significantly
decreased as they increased lag up to 225 ms, and Dabrowski
and Munson [1] find that users perceive lag longer than 150 ms
for keyboard input and longer than 195 ms for mouse input.

In this paper we present LagAlyzer, a tool to analyze and
visualize the causes of lag in interactive Java applications.
LagAlyzer operates offline on traces gathered by existing
latency profilers such as LiLa [6]. The analyses performed by
LagAlyzer enable us to characterize the reasons for perceptible
performance problems of Java applications. Our study involves

14 common open-source Java applications, ranging from small,
focused programs such as a crossword puzzle editor, all the way
to the most complex Java applications, such as the NetBeans
IDE with its 45000 classes.

The remainder of this paper is structured as follows: Sec-
tion II introduces LagAlyzer, our analysis and visualization
tool. Section III presents the experimental methodology of
our characterization study, and Section IV presents the results.
Section V discusses threats and limitations of our approach,
Section VI surveys related work, and Section VII concludes.

II. LAGALYZER

LagAlyzer is based on the concept of an episode [6], a
time interval from the point a user request is dispatched until
the point the request is completed. Episodes that take longer
than a given threshold (100 ms in this paper) are considered
perceptible, and thus have a negative impact on perceived
performance.

A. Input to LagAlyzer
LagAlyzer is not a profiler. It neither instruments applications

nor does it capture application behavior. LagAlyzer is a tool to
visualize and analyze traces produced by other tools. LagAlyzer
is an offline tool: it requires the complete traces to exist
before it can start to analyze and visualize them. In this
paper we use an extended version of LiLa [6], an existing
listener latency profiler, to produce traces of user sessions with
interactive applications. Besides information about the start and
end of each episode, the traces LiLa provides to LagAlyzer
also contain information about system behavior throughout the
episode. In particular, the traces contain:
Listener notifications. Traces contain the call and return to
each listener. Listener calls correspond to the handling of user
input (e.g. mouse and keyboard activity).
Graphics rendering. Traces contain the call and return to the
methods responsible for painting GUI components. These calls
are responsible for output of the interactive application (to the
screen).
Native calls. Traces contain all JNI calls and returns. This
allows us to determine whether the lag was induced by Java
code or by native libraries. All interactive Java applications use
native libraries, because at a minimum they indirectly invoke
native functions in the GUI toolkit.

Background-thread event dispatches. Traces contain the start
and end of all dispatches of GUI events posted by background
threads. Interactive applications use background threads for
various purposes, for example to implement timers used to
periodically recompute an animation, for reacting to informa-
tion received over the network, or for performing long-running
computations without blocking the user interface. Background
threads update the user interface by posting an event to the
event queue, and we track the processing of those events.
Garbage collection. Traces contain the start and end time of all
garbage collections. This allows us to determine to what degree
garbage collection, which in our experiments is performed by
a stop-the-world collector, affects perceptible performance.
Call stack samples of all threads. Traces contain periodi-
cally captured call stacks of all threads. This enables us to
estimate how much time in long latency episodes was spent
in the application versus the runtime system. Moreover, it also
provides insight into concurrency and synchronization issues
without requiring heavy-weight instrumentation.

The above information can be grouped into two categories:
intervals and events. Intervals correspond to activities that
occurred over an extended period of time, and where the
trace contains start and end time stamps. Events correspond
to activities that essentially completed instantaneously. Except
for the last item (call stack samples) in the above list, all
information is modeled as intervals. Table I shows the types of
intervals and the names we use to refer to them in this paper.

Name Description
Dispatch Start to end of a given episode
Listener A listener notification call
Paint A graphics rendering operation
Native A JNI native call
Async The handling of an event posted in a background thread
GC A garbage collection

TABLE I
INTERVAL TYPES

LagAlyzer represents the activity of each thread as a tree
of nested intervals. Given the type of intervals we collect, we
can guarantee that the intervals of a given thread are properly
nested (i.e. intervals either are nested or do not overlap at all).
This is the case because all interval types except for garbage
collection correspond to method calls and returns, and method
calls and returns are properly nested for any given thread.
Note that the instrumentation in the measurement tool we use
maintains that property also in the presence of exceptions.
Garbage collection intervals also are nested, because, in order
for a garbage collection to start, all threads have to reach a safe
point, and they are only released from that safe point after the
garbage collection finished. Note that, because a GC stops all
threads, for a given garbage collection we add a separate copy
of the GC interval to the interval trees of each thread.

The core of LagAlyzer consists of an in-memory represen-
tation of the latency traces described above. This core provides
the basis for the visualizations and analyses we present next.
Developers who want to write their own analysis can implement
it using the straightforward API provided by the core.

B. Episode Sketch

LagAlyzer visualizes individual episodes using an episode
sketch. Episode sketches are an extension of the trace timeline
visualizations implemented in LiLa Viewer [6]. Figure 1 shows
an example episode sketch. Like a trace timeline, an episode
sketch represents all the information available about a given
episode along a time axis. The sketch has three parts. (1) The
time axis at the bottom of the figure shows the time in the
execution of the application when this episode occurred. (2)
Above the time axis, LagAlyzer shows the tree structure of the
different intervals. LagAlyzer uses the different interval types
shown in Table I and renders each interval type in a different
color. (3) Unlike LiLa Viewer’s trace timelines, LagAlyzer’s
episode sketches also integrate a visualization of call stack
samples that were taken of the GUI thread during the episode.
Each sample is represented by a point colored according to the
thread state. Those points are shown along the top edge of the
figure. A user can hover over any point to see the complete call
stack trace and thread state information of that sample.

An episode sketch’s combination of stack samples with the
trace timeline provides previously missing information to the
developer. It provides answers to questions like whether, during
perceptibly slow episodes, the GUI thread was mostly runnable,
blocked, waiting, or sleeping, what fraction of time the thread
spent in native or in Java code, and what fraction of time
it was executing in the runtime library or in the application.
It is exactly these questions that we want to answer in the
characterization study in Section IV of this paper.

The episode shown in Figure 1, represented by the “dispatch”
interval at the bottom of the interval tree, took 1705 ms and
is thus clearly perceptible by the user. The visualization shows
that the entire duration of that episode is attributable to a call
to the JFrame.paint method, which called JRootPane.paint. This
call then lead to JLayeredPane.paint (which took 1533 ms), all
the way to JToolBar.paint (1347 ms). During that rendering of
the toolbar, roughly in the center of the episode, is a 843 ms
long interval representing a native call to the DrawLine function
of the sun.java2d.loops.DrawLine class. While this long call
indicates a potential inefficiency in the native code for drawing
lines, the interval tree shows a further interval nested inside this
native call. That 466 ms interval represents a garbage collection.

The episode sketch shows that during the garbage collection
no call stack samples were taken (there are no squares at
the top of the visualization during the garbage collection
interval). This is because during GC the JVMTI-based call
stack sampling, like any other mutator activity, is stopped. A
closer look at the figure shows that sampling activity actually
is stopped for almost the entire duration of the native call, not
just during the garbage collection interval. We were initially
surprised about this behavior. However, the wording in the
JVMTI specification [8] of the “Garbage Collection Start” and
“Garbage Collection End” events indicates that the notifications
of the begin and end of garbage collection (which our tracing
tool uses) bracket only the phase where all threads are stopped
and collection takes place. Thus the GC interval does not cover

Fig. 1. Episode sketch: temporal visualization of activity during an episode

the time where some threads are stopped while others still are
running towards (or already are running away from) their safe
point before (or after) the actual collection. As a result, the
behavior we observe in the figure most probably shows that
the GUI thread still was at the safe point, waiting to get its
first time slice. That also would imply that the native method
is not to blame for the lag, because it only got to run shortly
before it completed.

C. Episode Classification

Note that the fact that in the above example the GC is
triggered while the thread is inside the native method does not
mean that the native method is responsible for that GC. It could
be that prior code executed in this thread, or code executed
in different threads, was responsible for most of the memory
allocations that ultimately triggered the collection. Moreover,
it could also be that background threads monopolized the CPU
during the given episode, such that the GUI thread, while
runnable, was not actually executing for a while. Finally, it
could be that threads in other processes, outside the monitored
Java virtual machine, where using the CPU.

For all these reasons, looking at an individual episode is
not usually enough to determine the cause of long latency.
LagAlyzer thus groups episodes into equivalence classes ac-
cording to the structure of their interval trees. If an equivalence
class contains many episodes, and if all episodes in that
equivalence class exhibit significant lag, then this equivalence
class represents a common pattern of bad performance. It is
these patterns that developers should target when optimizing
the performance of their interactive applications. Moreover,
by grouping equivalent episodes into patterns, LagAlyzer can
present a developer with a small number of patterns, and the
developer does not need to look at the complete set of episodes.

D. Episode Patterns

We define patterns (equivalence classes on episodes) based
on the structure of the episode’s interval tree. By structure we
mean the type of interval and its symbolic information (e.g. the
class and method names of a listener interval).

In comparing two trees, we exclude the GC nodes. This is
because, as stated above, garbage collection may or may not be
blamed to the interval surrounding the GC interval. Thus, by
ignoring the GC intervals, a developer can determine whether a
given equivalence class always or rarely contains GC intervals.
If it always contains GC intervals, then the developer may want
to investigate the cause of the GC, and reduce the amount of
allocation to reduce the number of GC intervals.

Moreover, we also exclude timing information in the tree
comparisons. That is, two structurally equivalent episodes are in
the same equivalence class even if their durations differ greatly.
This allows us to find equivalence classes where all episodes are
perceptible, or classes where only one or a few episodes are per-
ceptible. Equivalence classes where all episodes are perceptible
are interesting for developers. Equivalence classes with only
few perceptible episodes are less interesting, because the few
perceptible episodes might be slow due to unrelated background
activity. Equivalence classes with only one perceptible episode,
especially if that episode is the first episode of that class, can
indicate that there was some initialization activity (e.g. class
loading) that slowed down the first episode.

E. Pattern Browser
LagAlyzer presents the user with a table of patterns. For each

pattern, it shows the number of episodes and the minimum,
average, maximum, and total lag encountered over all the
pattern’s episodes. The developer can filter the pattern table by
eliding any patterns that do not have any perceptible episodes.
By selecting a pattern in the table, the developer can reveal a
list of all the episodes in that pattern as well as an episode
sketch of the first episode of that list. The developer can then
browse through the sketches of all episodes in the pattern to
get a quick grasp of the timing variations between episodes.

III. METHODOLOGY

To characterize the perceptible performance of interactive
applications, we chose a suite of real-world Java applications.
We ran these applications under an extended version of LiLa to
gather latency profiles. We then used LagAlyzer to perform the
offline analyses needed to characterize the applications based
on the recorded latency profiles.

A. Platform
We ran all our experiments on MacBook Pro computers with

Core 2 Duo processors with 4 MB of cache, 2 GB of RAM,
and an NVidia 128-bit built-in graphics card with 128 MB of
RAM. We ran the benchmarks on Mac OS X 10.5 Leopard,
using the 64-bit version of Java 1.6.0 15 in server mode1.

B. Applications
We selected the 14 Swing applications shown in Table II.

They represent a diverse selection of popular open-source Java
GUI programs, spanning the range from small and focused tools
(like CrosswordSage) to large framework-based applications
(like NetBeans).

Application Version Classes Description
Arabeske 2.0.1 222 Arabeske texture editor
ArgoUML 0.28 5349 UML CASE tool
CrosswordSage 0.3.5 34 Crossword puzzle editor
Euclide 0.5.2 398 Geometry construction kit
FindBugs [4] 1.3.8 3698 Bug browser
FreeMind 0.8.1 1909 Mind mapping editor
GanttProject 2.0.9 5288 Gantt chart editor
JEdit 4.3pre16 1150 Programmer’s text editor
JFreeChart (Time) 1.0.13 1667 Chart library (time data)
JHotDraw (Draw) 7.1 1146 Vector graphics editor
Jmol 11.6.21 1422 Chemical structure viewer
Laoe 0.6.03 688 Audio sample editor
NetBeans (Java SE) 6.7 45367 Development environment
SwingSet 2 131 Swing component demo

TABLE II
APPLICATIONS

C. Interactive Sessions
We manually performed four similar sessions with each

interactive application. We planned the sessions to cover a
reasonable and realistic usage scenario for each application.
On average each session took roughly 8 minutes. For some
applications (e.g. JFreeChart) our sessions lasted less than 8
minutes because the limited functionality of the specific appli-
cations did not allow for longer sessions without excessively
repeating the same activity.

IV. LAG CHARACTERIZATION

In this section we introduce our approach to characterizing
the perceptible lag in interactive applications and we use our
approach to characterize a set of real-world Java applications.
The fully automated analysis of about 7.5 hours of interactive
sessions (roughly 250’000 episodes) took 15 minutes (including
the generation of MATLAB graphs).

A. Overview
Table III provides an overview of our 14 applications: it

contains one row per benchmark application and ends with a
row with the mean across all applications. Each row represents
the average over the four interactive sessions we performed with

1We used the server version of the virtual machine (instead of the client
version, which would be optimized for interactive applications), because some
applications depend on Java 1.6, and Apple only provides a server version of
Java 1.6 (and only in 64-bit).

each application. The table consists of three blocks: the name
of the benchmark, a quantification of session duration (“Exp.
time”), a characterization of episode duration (“Episodes”),
and a characterization of patterns mined from the episodes
(“Patterns”).
Session duration. The “E2E” column shows the end-to-end
execution time, this is the time from the start to the end of
a session. We see that the average session durations range
between 250 seconds and 630 seconds. These raw end-to-end
times, however, do not quantify to what degree we exercised
the application: they include all the user think time (potentially
we could have started the application, walked away from the
computer, and come back after 8 minutes). Column “In-Eps”
thus shows the percentage of time spent in episodes (the total
time the system spent handling user requests). This value ranges
from 8% to 47%. In most interactive applications, a user is
unable to keep the system busy at all times. For example, typing
at a rate of 100 characters per second would leave the system
with 10 ms to process each entered character – if processing a
character only takes 1 ms, then the system is idle 90% of the
time. We would thus observe an in-episode time of 10% even
if the user was continuously typing.
Episodes. To reduce measurement overhead and perturbation,
our tracing tool automatically filters out episodes that are
shorter than 3 ms. LagAlyzer thus never gets to see such
episodes, it only is able to see how many such short episodes
occurred. We show this number in column “< 3ms”. The large
counts in this column, up to over 1.2 million for Laoe, show
that most episodes are short (and thus uninteresting for under-
standing perceptible lag). Column “≥ 3ms” shows the number
of episodes, between 1173 and 9676, that were explicitly
represented in our session traces. Most of these traced episodes
are still not perceptible. Column “≥ 100ms” thus shows how
many episodes per session were actually perceptible by the
user. These are the episodes we need to characterize, because
it is these episodes that one has to eliminate or shorten to
improve the perceptible performance of these applications. We
observed between 24 and 706 perceptibly long episodes in each
interactive session, which highlights a considerable potential
for performance optimizations. Column “Long/min” shows the
fraction of perceptibly long (≥ 100ms) episodes per minute of
in-episode time2. This number, between 18 to 180 perceptible
episodes per minute, provides a notion of how frequently a user
becomes aware of the system’s lag, and it allows a comparison
of perceptible performance across applications and sessions of
different durations. While 180 perceptible episodes per minute
(3 perceptible episodes per second) seems high, a program
rendering a complex animation can easily reach this number,
given that it would aim at repainting the screen roughly 24 times
per second. According to this measure of perceptible episodes
per minute, our sessions with JMol had the worst perceptible

2We divide by in-episode time, and not by end-to-end time, because in-
episode time is a more stable denominator. If a user was to think for a long time
during an interactive session, the end-to-end time would drastically increase,
but the in-episode time would stay stable, while the number of (short or long)
episodes would also stay stable.

Exp. time Episodes Patterns
Benchmarks E2E [s] In-Eps [%] < 3ms ≥ 3ms ≥ 100ms Long/min Dist #Eps One-Ep [%] Descs Depth
Arabeske 461 25 323605 6278 177 95 427 5456 62 7 5
ArgoUML 630 35 196247 9066 265 75 1292 8011 66 10 5
CrosswordSage 367 8 109547 1173 36 80 119 1068 46 5 4
Euclide 614 35 109572 9676 96 26 202 9053 35 5 4
FindBugs 599 21 39254 6336 120 56 245 6128 44 6 4
FreeMind 524 11 325135 3462 26 30 246 3326 55 7 5
GanntProject 523 47 126940 2564 706 168 803 2373 70 18 12
JEdit 502 9 117615 2271 24 33 150 1610 50 5 4
JFreeChart 250 26 77720 1658 175 164 114 1581 44 6 5
JHotDraw 421 41 246836 5980 338 114 454 5675 70 8 5
JMol 449 46 110929 3197 604 180 187 3062 52 7 5
Laoe 460 47 1241198 3174 61 18 226 3007 58 8 5
NetBeans 398 27 305177 3120 149 82 642 2911 66 10 5
SwingSet 384 20 219569 4310 70 57 444 4152 59 9 6
Mean 470 28 253525 4447 203 84 396 4101 56 8 5

TABLE III
OVERALL STATISTICS

performance. This conforms to our subjective experience: when
we used JMol to perform three dimensional animations of
molecules with significant complexity and difficult to compute
surfaces, the animations exhibited a perceptible lag and their
frame rate dropped significantly.

0 20 40 60 80 1000

20

40

60

80

100

Patterns [%]

Cu
m

ul
at

ive
 E

pi
so

de
s

Co
un

t [
%

]

Arabeske
ArgoUML
CrosswordSage
Euclide
FindBugs
FreeMind
GanntProject
JEdit
JFreeChart
JHotDraw
JMol
Laoe
NetBeans
SwingSet

Fig. 3. Cumulative distribution of episodes into patterns

Patterns. Column “Dist” shows the number of distinct patterns
(according to the classification in Section II-C) we observed in
each application. This number is an order of magnitude lower
than the number of traced episodes, thus an average pattern
summarizes roughly 10 episodes. Column “#Eps” shows the
number of episodes actually covered in patterns. This number
is smaller than the number of traced episodes, because we
exclude episodes that have no internal structure (where the trace
contains a dispatch interval without any children). The column
shows that most episodes are covered by a pattern. Column
“One-Ep” shows the percentage of singleton patterns: patterns
for which we found only a single episode. This number is quite
high, 56% over all benchmarks, but these singleton patterns
only account for 10% of episodes. The last two columns in
the table further characterize the information available for each
pattern. They show the size (“Descs” – number of descendants
of the dispatch interval), and the average depth (“Depth”) of
the interval tree, averaged over all patterns, again excluding

episodes without any children. We can see that some bench-
marks provide much richer patterns. GanttProject shows an
average of 18 intervals in an episode’s interval tree. The episode
sketch in Figure 2 shows the reason for this rich tree structure:
GanttProject has a complex, deeply nested structure of GUI
components, and a paint request to its main window triggers
recursive paint requests throughout its component tree, leading
to a deep nesting of paint intervals in the episode sketch.

Figure 3 presents the cumulative distribution of episodes
into patterns. The x-axis represents the percentage of patterns
that cover a certain percentage of episodes (y-axis). Each line
represents a different benchmark (see legend). The figure shows
that the patterns follow the Pareto rule: roughly 80% of episodes
are covered by only 20% of the patterns. Thus, some patterns
occur very frequently and our classification approach is able
to condense a large fraction of episodes into a small summary
consisting of a few prevalent patterns.

B. Occurrence of Lag: Always, Sometimes, Once, or Never
LagAlyzer’s Pattern Browser presents a developer with a list

of episode patterns that summarize the events that occurred
during the application’s execution. This browser helps the de-
veloper to quickly focus on the few problematic patterns. In this
section we characterize how problematic the identified patterns
are in terms of how many perceptible episodes each pattern
represents. Figure 4 shows the results of this characterization.

In the worst case, all episodes of a given pattern are per-
ceptible (“always” in the figure). Such a pattern represents
a deterministic problem which probably can be understood
quickly. Often, only some of a pattern’s episodes are per-
ceptible (“sometimes”). Such patterns may represent a nonde-
terministic phenomenon and may be difficult to understand.
It can happen that only one of the episodes of a pattern is
perceptible (“once”), for example because this was the pattern’s
first episode which triggered expensive initialization activities.
Ideally, none of a pattern’s episodes are perceptible (“never”).
We classify singleton patterns (patterns with only one episode)
as “always” if their only episode was perceptible.

The two extreme cases we see in this figure are GanttProject
and FreeMind. In GanttProject, 57% of patterns are always

Fig. 2. Episode sketch of GanttProject, showing deep nesting of paint intervals

0 20 40 60 80 100

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Patterns [%]

Be
nc

hm
ar

ks

Always Sometimes Once Never

Fig. 4. Long-latency episodes in patterns

perceptibly slow. This high percentage is a consequence of our
classification of singletons: GanttProject has many singleton
patterns. This is related to the complexity of the interval tree
structure in GanttProject’s episodes, which causes a much larger
set of distinct patterns. As we have discussed in Section IV-A,
GanttProject has many deeply nested paint episodes, and many
of them are perceptibly long. In FreeMind, 92% of patterns
are never slow. This is due to FreeMind having only a small
number (26 out of 3462) of perceptible episodes.

Overall, Figure 4 shows that for the 14 applications we
studied, most patterns (96% on average) are either consistently
slow or consistently fast, and a relatively small fraction of
patterns (22%) are (once, sometimes, or always) perceptible.

C. Trigger: Input, Output, or Asynchronous Events
Lag can occur in handling input, e.g. by processing mouse

and keyboad events. It can occur in producing output, e.g. in
rendering data to the screen. Finally, it can occur in events
triggered by asynchronous activity, such as when a background
thread notifies the GUI thread of a state change in the applica-
tion’s model. In this section we characterize episodes according

to these different triggers.
To determine the trigger of an episode we perform a pre-

order traversal of its interval tree. The type of the first “listener”,
“paint”, or “async” interval determines the trigger. A “listener”
interval implies the episode was triggered by input (listeners
usually are responding to user input events such as mouse
clicks). A “paint” interval implies the episode was triggered
by the system requesting an update of the program’s output
(paints represent activity that renders to the screen). An “async”
interval implies that an asynchronous event was triggering the
episode3. Finally, some episodes contain no children at all, or
at least no “listener”, “paint”, or “aysync” child that was long
enough to pass the tracing infrastructure’s filter (> 3 ms). We
classify those episodes as unspecified in this analysis.

Figure 5 categorizes all episodes according to their trigger.
The figure contains two graphs: the upper graph shows the data
for all traced episodes and the lower graph shows the data for
only the perceptible episodes. A performance analyst is mostly
interested in the lower graph, because she needs to optimize
the episodes with perceptible latency and does not care about
the large number of imperceptible episodes. Each graph shows
one stack of bars for each application. The x-axes show the
percentage of episodes (resp. of perceptible episodes) grouped
by their triggers.

On average across all benchmarks, 40% of the perceptible
lag is due to input processing, 47% due to output, and 7% due
to the handling of asynchronous notifications.

We now discuss the applications that exhibit particularly
striking characteristics. In Arabeske, 57% of the perceptible
episodes have no specific trigger. An investigation with Lag-
Alyzer shows that many perceptible episodes are empty (and

3We found that the Swing GUI toolkit’s repaint manager sometimes causes
“asynchronous” intervals, even though it does not run in a different thread, due
to the way it enqueues requests for repainting a component. We can identify
these special episodes by their tree structure: they contain an “async” interval
containing a “paint” interval. We remove those episodes from the group of
asynchronous episodes and reclassify them as output episodes.

0 25 50 75 100

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes >100ms [%]

Be
nc

hm
ar

ks

0 25 50 75 100

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes [%]

Be
nc

hm
ar

ks

Input Output Asynchronous Unspecified

Fig. 5. Triggers of (perceptible) episodes

therefore appear as unspecified). Most of these episodes consist
of a long garbage collection interval. A look at the call stack
samples during these episodes shows that the program calls
System.gc() and thereby explicitly triggers a major garbage
collection. Explicitly requesting a garbage collection during an
interactive episode could be considered a performance bug.

For JMol, 98% of the perceptible episodes are output
episodes. Most of these episodes conform to a single pattern,
which represents the rendering of the complex three dimen-
sional molecule visualization. Given that JMol shows a timer-
based animation, it triggers a repaint roughly every 40 ms,
leading to a large number of output episodes even without user
input activity.

In ArgoUML, 78% of perceptible episodes are input
episodes. These episodes belong to many different patterns,
representing the complexity of the application. Most of these
patterns are related to input that needs to update the UML
model maintained in the application, and some of these updates
trigger expensive computations and checks.

FindBugs shows the largest fraction of asynchronously trig-
gered episodes (42%). These episodes are mostly due to a
background thread that periodically triggers an update of the
animated progress bar. One of the patterns of this kind rep-
resents episodes that spend a significant amount of time in
the toolkit’s progress bar animation code, and where, in each
such episode, a garbage collection is triggered at that time.

Given that the garbage collections in this pattern often take
several hundred milliseconds, it would be worthwhile for a
performance analyst to investigate the allocation behavior in
the progress bar animation code.

D. Location: Application, Library, Garbage Collector, or Na-
tive Code

Lag may be induced by the application, the runtime libraries,
the garbage collector, or by native code. We first distinguish be-
tween the percentage of time spent in application versus library
code. We analyze the call stack samples taken in Java code
during episodes, and we partition them into application and
runtime library samples. We distinguish between application
and library samples based on the fully qualified class name
of the method that was executing when the sample was taken.
We use a different approach to distinguish between garbage
collection, native code, and Java code time: Garbage collections
and native calls are explicitly represented in traces as intervals,
and thus we can directly compute the fraction of episode time
spent in these two areas.

0 25 50 75 100

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes >100ms − Time [%]

Be
nc

hm
ar

ks

0 25 50 75 100

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes − Time [%]

Be
nc

hm
ar

ks

GC Native RT Library Application

Fig. 6. Location where time was spent during (perceptible) episodes

Figure 6 shows the results of this analysis. The upper graph
shows the data for all episodes and the lower graph focuses on
the perceptible episodes. For each benchmark a graph shows
two stacks of bars. The first stack shows the fraction of episode
time spent in application versus runtime library code. The
second stack shows the fraction of episode time spent in GC
and native code.

On average over all applications, 52% of perceptible lag
occurs in the runtime libraries and 48% in the application.
The fact that more than half of the lag is due to time spent
in the runtime libraries shows the importance of an efficient
class library implementation for perceptible performance. 11%
of perceptible lag is due to garbage collections, and 5% due to
native calls. The contribution of native calls is thus relatively
minor. The lag due to garbage collection is significant, however
the average is greatly affected by two outliers.

We now discuss the applications that stand out in this
characterization. As we have already discussed in Section IV-C,
Arabeske explicitly triggers major garbage collections. As we
can see in Figure 6, these garbage collections are responsible
for about 60% of the perceptible lag.

Roughly 26% of the perceptible lag in ArgoUML is due
to garbage collection. A look at LagAlyzer shows that minor
garbage collections are spread throughout many of the episodes
in many of the patterns. The upper graph of Figure 6 shows
that over all episodes, ArgoUML spends 16% of time in GC:
thus, GC is prevalent throughout program execution and is
not uniquely concentrated in long episodes. These findings
indicate that ArgoUML has a generally high allocation rate that
necessarily leads to relatively frequent garbage collections.

24% of the perceptible lag in JFreeChart is due to native
code. As we have seen in Figure 5, a large fraction of
JFreeChart’s lag is due to output. Using LagAlyzer, we can see
that many episodes contain calls to native rendering methods.
While individual rendering calls complete quickly, the many
calls add up to the 24% contribution we see.

In Euclide, roughly 73% of perceptible lag is due to time
spent in the runtime library. A look at the call stack samples
during these episodes shows that Euclide was particularly slow
in reacting to events in combo box controls. At the end of
Section IV-E we will provide a more detailed explanation of
the cause of this long lag for Euclide.

96% of the perceptible lag in JHotDraw is due to time spent
in application code. LagAlyzer shows that a large fraction of
the call stack samples were taken in code related to drawing
handles and outlines of bezier curves. In our JHotDraw session
we drew bezier curves of considerable complexity, and it looks
like JHotDraw does not easily scale in that respect.

E. Cause: Concurrent Activity, Synchronization, Sleep, and
Work

In this section we characterize the causes of perceptible
latency. We group these causes into four categories: (1) con-
current activity in a background thread might slow down the
GUI thread, (2) the GUI thread might be blocked entering a
monitor, (3) the GUI thread might be waiting in Object.wait()
or LockSupport.park(), (3) the GUI thread might voluntarily
sleep, or (4) the GUI thread might have a lot of work to do.

Concurrent Activity. Figure 7 shows, for each benchmark,
the average number of runnable (not necessarily running)
threads during episodes. We compute this measure of con-
currency by analyzing each call stack sample taken during

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes >100ms

Be
nc

hm
ar

ks

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes

Be
nc

hm
ar

ks

Runnable threads

Fig. 7. Concurrency in episodes (average # of runnable threads)

episodes. For each sample we count the number of runnable
threads.

A value of one means that exactly one thread was runnable,
and given that episodes execute in the GUI thread, this has to
be the GUI thread. A value below one means that the GUI
thread sometimes was blocked, which might have caused the
observed lag. A value above one means that other Java threads
were competing with the GUI thread for the CPU core(s), and
thus might have caused the lag by limiting the progress of the
GUI thread.

The small amount of concurrency in these applications is
surprising: only 1.2 threads are runnable on average over all
episodes (upper chart). We believe this is due to the single-
threaded design of modern GUI toolkits: all interactions with
the toolkit have to happen in the designated GUI thread. As a
result, developers prefer to also perform all computation in the
GUI thread, and will only extract computation to background
threads if absolutely necessary (if computation causes a per-
ceptible lag). LagAlyzer helps to find exactly these cases.

For perceptible episodes, the average number of runnable
threads is even lower than 1. The only applications with a
concurrency greater than one during long-latency episodes were
Arabeske, FindBugs, and NetBeans. These applications seem
to make use of background threads. For example, we use
FindBugs to open a project containing more than 1600 classes.
Loading that project takes roughly 3 minutes, and given that

loading happens in a background thread, throughout the loading
activity that thread competes with the GUI thread for the CPU.

0 10 20 30 40 50 60

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes >100ms − Time [%]

Be
nc

hm
ar

ks

0 10 20 30 40 50 60

Arabeske
ArgoUML

CrosswordSage
Euclide

FindBugs
FreeMind

GanntProject
JEdit

JFreeChart
JHotDraw

JMol
Laoe

NetBeans
SwingSet

Episodes − Time [%]

Be
nc

hm
ar

ks

Blocked Wait Sleeping

Fig. 8. Synchronization and sleep during episodes

Synchronization, Sleep, and Work. To determine to what
degree event handling latency is caused by synchronization,
voluntary sleep, or productive work, we count the fraction of
call stack samples taken while the GUI thread was in each of
these states. Figure 8 partitions the time the GUI thread spent
in episodes into four components represented in a stacked bar:
time blocked while trying to enter contended monitors (first part
of bar), time waiting in Object.wait() and LockSupport.park()
(second part of bar), time sleeping (last part of bar), and time
the thread was runnable (the remainder). Note that we zoomed
the x-axis of the figure to 60% to better show the different parts
of the bars: even though the bars seem big, the GUI thread is
runnable most of the time. Also note that the upper graph in the
figure, which shows the same statistics for all episodes (not just
the perceptibly slow ones), shows almost no time spent in the
blocked, wait, or sleep states. This difference demonstrates that
aggregate information across the entire program execution is
not necessarily helpful in pinpointing the causes of perceptible
lag in interactive applications.

Synchronization does not seem to significantly affect percep-
tible performance: in most benchmarks the GUI thread spends
less than 10% of the time of perceptible episodes blocked or
waiting. The most notable exception is jEdit, where over 25%
of perceptible lag is due to waits. Looking at the corresponding

stack traces in LagAlyzer, we can see that the synchronization
is related to event processing inside jEdit’s modal dialogs. In
FreeMind, 12% of the perceptible latency is due to monitor
contention, and the stack traces indicate that the cause lies in
the display configuration code of the runtime library.

We were surprised that voluntary sleep was responsible for a
significant fraction of the perceptible lag. For Euclide, over 60%
of perceptible lag was due to the GUI thread’s sleep. LagAlyzer
pointed us to the cause of this call to Thread.sleep: All stack
traces where the GUI thread was sleeping were inside a method
in Apple’s GUI toolkit. That method caused a blinking effect in
Apple’s combo box implementation. The same issue appeared
across all benchmarks: all time spent in Thread.sleep was due
to Apple’s implementation of this blinking animation.

V. LIMITATIONS AND THREATS TO VALIDITY

The previous section demonstrated the usefulness of LagA-
lyzer by characterizing the perceptible performance of realistic
interactive Java applications. We now discuss the threats to the
validity of our results.

The interactive sessions we performed may not be represen-
tative of the sessions real users would perform in production
use. We were constrained in our ability to produce traces by
the limitations of the LiLa profiler. LiLa requires significant
effort in instrumenting the application and produces relatively
large traces for real-world sessions. This is because LiLa’s main
purpose is to help a developer to find specific performance
problems in a laboratory scenario, not to trace long-running
sessions of users in the field. We addressed this issue by
conducting interactive sessions, that, while being relatively
short, performed realistic operations on realistic inputs (e.g.
we analyzed a 1500 class project in FindBugs, or we edited a
complete song in form of an MP3 file for LaOE).

LagAlyzer is an offline tool that needs to load the complete
session trace into memory for analysis and visualization. To
allow LagAlyzer to handle our sessions of around 8 minutes,
given the considerable size of LiLa traces, we first filtered out
all episodes shorter than 3 ms. Note that to analyze multiple
sessions, for example for the analysis that produced the charts
of Section IV, LagAlyzer can analyze one session at a time.

LagAlyzer itself does not perturb the measurements. The
LiLa profiler, however, could potentially exhibit measurement
perturbation. For example, it could slow down the application
due to its instrumentation, or increase the frequency of garbage
collections by allocating a significant amount of temporary data.
We plan to study the perturbation of LiLa in future work.

Our study focuses on a single thread, the GUI thread.
However, LagAlyzer already supports traces based on multiple
concurrent event dispatch threads. It defines the notion of an
episode as the time interval from the point where a given thread
starts handling a GUI event until that thread finishes handling
that event. The fact that we only have one GUI thread is a
design property of the GUI toolkit and not a limitation of our
approach.

VI. RELATED WORK

To measure perceptible performance of modern interactive
applications, we previously introduced the idea of listener
latency profiling [6], an approach that attributes lag to source
code artifacts called listeners, and we built a profiler, LiLa, to
measure the lag of user requests of interactive Java applications.
In this paper, we use an extended version of LiLa for gathering
the traces which we analyze with LagAlyzer.

In the same prior paper, we also presented LiLa Viewer, a
visualization tool that draws trace timelines showing the start
and end of each interactive request and the tree of listener
calls and returns that handled each of the requests. The goal
of our prior work was to help developers to find the listeners
responsible for long latency. LagAlyzer extends the timeline-
based visualization of episodes by correlating intervals with call
stack samples to give a more complete picture of system be-
havior during long latency episodes. The combined analysis of
listener latency traces with call stack samples allows LagAlyzer
to determine whether, during perceptibly long episodes, the
GUI thread was mostly runnable, blocked, waiting, or sleeping,
what fraction of time the thread spent in native or in Java code,
and what fraction of time it was executing in the runtime library
or in the application. Moreover, LagAlyzer groups episodes
into equivalence classes, and it integrates multiple traces in its
analysis, and thus helps to uncover repeating patterns of bad
performance. This use of patterns also reduces the developer’s
effort when studying a performance problem.

Endo et al. [2] present a non-intrusive approach for mea-
suring the response time of interactive applications running on
Microsoft Windows. Their approach is based on a probe thread
that runs with a low priority in the background. Given that
the operating system only schedules the probe thread when the
(higher priority) interactive application is idle, this approach
allows them to indirectly measure idle time intervals. They find
that Microsoft Word handles roughly 92% of user requests in
less than 100 ms, and that PowerPoint performs significantly
worse. However, they do not investigate the reasons of high
latency user requests.

Fláutner et al. [3] take a more intricate approach to mea-
suring interactive response times. They keep track of all the
communication between processes as a result of a user event in
the X window server (the user-space process in UNIX systems
responsible for all GUI input and output).

Zeldovich et al. [12] instrument VNC [9], a software and pro-
tocol for interacting with a GUI application over the network.
By monitoring the communication between the VNC client and
server, they can deduce the response time between user inputs
and screen updates. The best case scenario in their study shows
that only 45% of requests are handled in less than 100 ms.

Howell et al. [5] compare the latency of application startup
and four specific GUI events (that display the next screen in
a database frontend) on two different Java GUI toolkits (the
standard Swing and the open-source Thinlet). They focus on
comparing the latency differences between different GUI toolk-
its, and they do so in a tightly controlled experiment with very

limited interactions, while we characterize the contributions to
perceptible latency observed in realistic interactions with real-
world applications.

VII. CONCLUSIONS

In this paper we present the first study that gives insight into
why interactive Java applications are sometimes perceived as
slow. We present a tool, LagAlyzer, that analyzes offline traces
gathered with a latency profiler and mines them for repeated
patterns. It allows developers to browse through those patterns
and to visualize perceptible episodes in the form of “episode
sketches” that combine the necessary information to help solve
performance problems. We use LagAlyzer to characterize the
performance of 14 interactive applications ranging from a small
crossword puzzle editor all the way to NetBeans, a professional
IDE consisting of over 45000 classes. Our results show that the
reasons for bad perceptible performance in these real-world
applications are diverse and vary between applications. They
include significant time spent in the Java runtime libraries,
excessive time spent processing input or producing output,
time spent in garbage collection, in native code, and even time
spent voluntarily sleeping. We find surprisingly little concurrent
activity in these applications and as a result also only a minor
impact of synchronization on perceptible performance.

REFERENCES

[1] J. R. Dabrowski and E. V. Munson. Is 100 milliseconds too fast? In CHI
’01: CHI ’01 extended abstracts on Human factors in computing systems,
pages 317–318, New York, NY, USA, 2001. ACM.

[2] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using latency to evaluate
interactive system performance. In OSDI ’96: Proceedings of the second
USENIX symposium on Operating systems design and implementation,
pages 185–199, New York, NY, USA, 1996. ACM.

[3] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level paral-
lelism and interactive performance of desktop applications. In ASPLOS-
IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 129–
138, New York, NY, USA, 2000. ACM.

[4] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, 2004.

[5] C. J. Howell, G. M. Kapfhammer, and R. S. Roos. An examination
of the run-time performance of gui creation frameworks. In PPPJ
’03: Proceedings of the 2nd international conference on Principles and
practice of programming in Java, pages 171–176, New York, NY, USA,
2003. Computer Science Press, Inc.

[6] M. Jovic and M. Hauswirth. Measuring the performance of interactive ap-
plications with listener latency profiling. In PPPJ ’08: Proceedings of the
6th international symposium on Principles and practice of programming
in Java, pages 137–146, New York, NY, USA, 2008. ACM.

[7] I. S. MacKenzie and C. Ware. Lag as a determinant of human performance
in interactive systems. In CHI ’93: Proceedings of the INTERACT ’93
and CHI ’93 conference on Human factors in computing systems, pages
488–493, New York, NY, USA, 1993. ACM.

[8] S. Microsystems. Java Virtual Machine Tool Interface (JVMTI) 1.1.109.
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html, 2007.

[9] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual
network computing. IEEE Internet Computing, 02(1), 1998.

[10] B. Shneiderman. Response time and display rate in human performance
with computers. ACM Comput. Surv., 16(3), 1984.

[11] B. Shneiderman. Designing the user interface: strategies for effective
human-computer interaction. Addison-Wesley, 1986.

[12] N. Zeldovich and R. Chandra. Interactive performance measurement with
vncplay. In ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 54–54, Berkeley, CA, USA, 2005.
USENIX Association.

