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Abstract

Performance analysts commonly use trace-based data containing
hardware and software metrics to understand performance. The
trace data is generated by instrumenting the code to increment a
counter when an event occurs and to collect hardware and software
metrics in a trace. Unfortunately, the act of collecting a trace can
perturb the behavior that the trace is trying to capture.

In this paper, we gain an understanding of perturbation due
to measurement instrumentation of the system. We identify two
mechanisms to quantify perturbation: inner and outer perturbation.
Using inner perturbation, a performance analyst can determine
when a run is perturbed by collecting too much information. Using
outer perturbation, the performance analyst can determine if she
can use the data from multiple runs as if the data were all from a
single run.

Our evaluation of these mechanisms lead to two results. First,
we are surprised to find that even with minimal instrumentation
overhead, which increased instructions executed by less than 3%,
high perturbation resulted, which prevented one from correctly
reasoning about metrics within a trace or across traces. Second, the
instrumentation of different software metrics interact in subtle, and
not always obvious, ways making the impact of instrumentation on
perturbation difficult, if not impossible, to predict.

Finally, we outline a methodology for collecting data while
avoiding perturbation. When inner perturbation occurs, the perfor-
mance analyst can spread out the data collection over multiple runs.
When outer perturbation occurs, she can try different strategies for
spreading out the data collection over multiple runs.

1. Introduction

In prior work [6, 5] we showed that to understand the perfor-
mance of a modern system one needs to collect the traces of hun-
dreds of software and hardware metrics. Hardware features, such
as hardware performance monitors, and software tools, such as
ATOM [14] and PIN [7], enable performance analysts to easily
collect these metrics in traces. However, the performance analyst
does not know if the data collection has perturbed the behavior that
she was trying to understand. This is known as the observer ef-
fect. Most performance analysts assume that if the instrumentation
does not change the execution time or instruction count by a large
amount (say 5-10%) then the perturbation will be small. To our
knowledge, no one has thoroughly explored the nature of pertur-
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bation and whether or not a small change in instructions or cycles
actually guarantees that the perturbation is also small. This paper
demonstrates an approach for measuring perturbation and also de-
scribes an approach for avoiding unacceptable perturbation.

Hardware support enables us to collect hardware metrics with
minimal perturbation: counting the number of times a hardware
metric occurs is done in hardware. However, collecting software
metrics may significantly perturb the system. To observe the events
counted by software metrics the system needs to be instrumented
with additional instructions. This instrumentation overhead can af-
fect almost all aspects of performance. For example, instrumented
software may incur different misses in the caches and page tables,
because the code is larger and additional loads and stores execute
at runtime to increment counters. However, we can try to detect
when there is significant perturbation and work around it. This pa-
per presents such a methodology and also presents a preliminary
evaluation of parts of the methodology.

In our methodology, a performance analyst decides on a set of
metrics to collect. The selection of these metrics may be targeted
(e.g., focus on the behavior of a particular aspect of the system)
or may be general (e.g., the system behaves poorly and the perfor-
mance analyst does not know why, so she wants to collects all the
metrics that she can). In both cases, it is possible that the collection
of the metrics will perturb system behavior; we present data that
demonstrates that even low instrumentation overhead (in terms of
percentage increase in the number of instructions) can dramatically
perturb behavior.

To assist the performance analyst in collecting these metrics, our
methodology informs the user when data collection has excessively
perturbed a run. The performance analyst can start by collecting
all metrics in a single run and use our method to determine if
the perturbation is excessive. If so, she can partition the set of
metrics into subsets and collect only one subset of metrics in each
run. In prior work [5, 11], we have demonstrated an approach for
aligning traces; we can use that alignment approach to enable the
performance analyst to reason across the different subsets as if
they had all been collected in the same run. Unfortunately, trace
alignment does not always work; for this reason we also describe
a method that detects when perturbation causes trace alignment to
fail. In this case the performance analyst can try to collect different
subsets and try again.

Our results indicate that low overhead (in instructions executed)
does not necessarily translate to low perturbation. In some of our
benchmarks, adding instrumentation amounting to fewer than 3%
of total instructions dramatically perturbs the relationship between
the metrics and thus affects a performance analyst’s ability to ef-
fectively reason with the data.

The remainder of this paper is organized as follows. Section 2
introduces our methodology. Section 3 demonstrates that even the
low overhead caused by instrumentation for software metrics can
significantly perturb system behavior. Section 4 discusses what
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Figure 1. Inner perturbation

further work needs to be done to make our methodology a reality.
Section 5 discusses related work and Section 6 concludes.

2. Methodology

We consider perturbation to occur when instrumentation changes
relationships between metrics. For example, if before instrumen-
tation L1 and L2 cache misses follow the same trends but after
instrumentation they do not follow the same trends any more, we
consider perturbation to have occurred. To capture the notion of
“same trends” or “different trends” we use statistical correlation.
Thus, in this paper, we quantify perturbation as the variation in cor-
relation scores before and after instrumentation.

Our methodology provides two approaches to measure pertur-
bation: Inner perturbation for deciding whether a given run has
been perturbed by the metrics that it collected, and outer perturba-
tion for deciding whether two runs are similar enough that we can
reason across them.

2.1 Establishing a baseline

Before we can determine whether or not there is perturbation, we
first need to establish a base line: what does an unperturbed run
look like? Unfortunately, it is impossible to collect data without
any perturbation at all. However, we expect that the perturbation
with hardware performance monitors is minimal because the only
cost is in taking the interrupt at each interrupt interval. Because the
interrupt interval is quite large, tens to hundreds of milliseconds
(Section 3), we use a run with only hardware performance monitors
as the baseline trace.

2.2 Inner perturbation

To determine if instrumentation has excessively perturbed a run R,
we compare that run to a baseline run, B, which does not capture
software metrics. We require B and R collect the same hardware
metrics. R generally collects additional software metrics. We com-
pute the correlation score of each distinct pair of hardware metrics
in B and do the same for R. We call these computed correlations
“inner correlations” because the two metrics being correlated come
from the same trace. We then compare the correlation scores in B to
the corresponding scores in R (which gives us the inner perturba-
tions). If the correlation scores are significantly different between
B and R then we know that the software metrics have perturbed R.
For example, let’s suppose B contains the hardware metrics (H1,
H2, H3) and R contains these metrics plus software metrics (S1,
S2) (Figure 1). To see if collecting S1 and S2 perturbed R, we
compute the inner correlation scores of the following metric pairs
for B and also for R: (H1,H2), (H1,H3), (H2,H3). Then we com-
pare the correlation of H1 with H2 in B to their correlation in R,
the correlation of H1 and H3 in the B to their correlation in R and
so on, to determine if collecting (S1, S2) has perturbed the run.

Figure 2. Outer perturbation

2.3 Outer perturbation

Outer perturbation enables us to determine if instrumentation has
perturbed a run to the point that it can not be aligned properly with
another run. Once again assume that we use a baseline trace B as
above (though that is not strictly necessary). We align B to the
trace of a run of interest R using an alignment technique. Then, for
each hardware metric, we correlate the hardware metric in B to the
same metric in the aligned R (Figure 2). We call these calculations
outer correlations because they correlate the signal of a metric from
one trace with the signal of the same or another metric from a
different trace. If there is minimal perturbation and the alignment
works correctly, then the correlation scores should all be 1.0 (i.e.,
perfect correlation). Any significant deviation from 1.0 (which we
call outer perturbation) indicates a perturbation.

Outer perturbation assumes a trace alignment technique that
aligns the trace records in the two traces. Trace alignment may align
a trace record in one trace with multiple records in the other trace.
In this paper, we use dynamic time warping [1, 5] to align traces;
however, one can use any alignment technique.

3. Experiments

We now measure and analyze the effect of perturbation due to in-
strumentation on the relationship between metrics. We quantify the
“relationship between two metrics” as the Spearman’s correlation
coefficient between the metrics.

3.1 Infrastructure

To conduct the experiments in this paper, we added an extension to
CIL [12] which instruments C programs. Our extension inserts two
kinds of instrumentation: for low-level events and for high-level
events.

For low-level events we insert calls to PAPI [2], a portable in-
terface for accessing hardware performance monitors, at the be-
ginning of a program’s execution to identify the set of hardware
metrics to be collected. The cost of counting how many times a
hardware metric occurs is zero because it is done in hardware.

For the high-level events, we add instrumentation to the C pro-
gram. For each kind of instrumentation, we add a global variable
to the C program and increment that variable every time that event
occurs.

To collect hardware and software metric values at regular inter-
vals, we use the setitimer interface provided by the Linux kernel.
We register a signal handler that collects events over a millisecond
interval. The signal handler tells PAPI to stop counting events, then
fetches the values of the metrics, writes them to disk, resets their
values, and resumes counting. Although collecting metric values
introduces perturbation to a program’s execution, the perturbation
is minimal as long as the timer interval is sufficiently large. We
picked our timer interval to be on the order of tens to hundreds of
milliseconds (more on this below), and carefully designed the code



executed by the signal handler to do the least amount of work in
collecting hardware and software events.

Given a configuration file that describes what hardware met-
rics to collect and exactly what software metrics to instrument and
collect, our extension to CIL instruments C programs to generate
traces that contain both high-level and low-level events (i.e., verti-
cal traces [6]). We have added a flexible mechanisms for specifying
software metrics; for example, users can indicate that every update
of a particular variable or every call to a particular function is an
event.

3.2 Benchmarks

Table 1 describes our benchmark programs. Three of the bench-
marks are from the SPEC CPU2006 suite [15] and one is the cycle-
accurate architectural simulator from the SimpleScalar toolkit [3].

For this paper we collected approximately 700 traces. Our sub-
sequent analyses worked not just on individual traces but on pairs
of traces. Because our analyses are quadratic in time and since we
needed to run them many times, we limited our traces to approx-
imately 3000 trace records (i.e., for each trace the signal handler
executed about 3000 times). To accomplish this goal, we (i) picked
timer intervals for each benchmark that yielded traces that were
approximately 3000 records and (ii) picked inputs that were realis-
tic but not so large that we would have to use an excessively large
timer interval.

3.3 Significance of perturbation

We expect that the perturbation due to the tracing of hardware
performance monitors is minimal, because the only overhead is in
writing values to disk at the end of each timer interval. Because
the timer interval is quite large, tens to hundreds of milliseconds
(see the last column in Table 1), we use a run with only hardware
performance monitors as the baseline trace for each benchmark.

Both of inner and outer correlation detect perturbation when
there is a significant deviation between the correlation scores in
the baseline trace and the trace instrumented with software per-
formance monitors. The definition of significant depends on how
much variation one normally gets between identical runs of the
baseline trace: even if there is no perturbation, runs may not yield
identical time series due to non-determinism introduced by oper-
ating system activity, etc. If the deviation between the correlation
score of the baseline trace and the correlation score of the instru-
mented trace is smaller than the deviation observed due to non-
determinism, then the deviation is not significant; if it is larger, then
it is significant.

Figure 3 shows the inner correlation for two pairs of metrics
of the sjeng benchmark; other benchmarks or metric pairs yield
similar graphs so we omit them. The x-axis identifies a trace (we
collected a total of 26 baseline traces, all of which measured only
the hardware metrics). The y-axis gives the inner correlation score
between a pair of metrics within a trace. It should be noted that we
are using Spearman’s correlation coefficient, which ranges from
[-1,1]. To make the graphs more readable, we always take the
absolute value of the correlation coefficient, and only plot the range
[0.3,1], as correlation scores below 0.3 are not very interesting in
our analysis.

We see that for both pairs of metrics, the curve is largely flat; in
other words, while there is some inter-trace variation, the variation
is small. The inter-trace variation identifies system perturbation that
is due to non-determinism in the underlying operating system and
hardware. We can use this result to help understand if deviations
in correlation scores are due to instrumentation perturbation. If
we observe a deviation in correlation score which is greater than
the variations in Figure 3 then we can be quite confident that the
deviation is due to perturbation.
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Figure 3. Inner correlation with zero instrumentation (baseline) in
sjeng
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Figure 4. Inner correlation depending on instrumentation over-
head in sjeng

34 Evaluation of inner perturbation

Figure 4 illustrates that instrumentation overhead can significantly
impact the relationship between two metrics in the same trace file.
In this figure, the x-axis is the percentage of instructions added
by the instrumentation to collect software metrics. The y-axis is
the inner correlation between two metrics. Each curve is the inner
correlation between a pair of metrics; thus the shape of each curve



[ Benchmark | Description | Source [ Input | Timer interval |
bzip Compression SPEC CPU2006 [15] | input.source (ref input) 10ms
mcf Vehicle scheduling SPEC CPU2006 [15] | inp.in (ref input) 30ms
sim-outorder | Architectural simulator | Simplescalar [3] gcce.ss -0 integrate.i 100ms
sjeng Chess SPEC CPU2006 [15] | train.txt (train input) 200ms

Table 1. Benchmark programs
Good Perturbed
L1 o |
T —3— PAPI_BR_MSP-PAPI_L2_TCM
) o | |5~ PAPI_L2_TCM-PAPI_TLB_DM
L2 o ) - o e
o |
o
S not measured S T — é .| 555 5---6 SHESED - - 55 W
° ©
Figure 5. Perturbation due to instrumentation for one additional %
software metric in sjeng = 9
2 o
£
0 |
o
indicates how inner correlation changes as we add more and more
instrumentation. p g —8—3 B
The leftmost point gives the correlation score for the baseline
trace; i.e. the trace where we only collect hardware metrics. As @

a point of reference, note that this point corresponds to the first
point in Figure 3. The next point in Figure 4 gives the correlation
score when we collect one software metric, while the third point
gives the correlation score when we collect two software metrics;
and so on. For example, the trace file represented by the fifth point
contains four software metrics: the three software metrics from the
third point plus an additional software metric.

The figure illustrates, for the sjeng benchmark, that perturba-
tion due to instrumentation significantly affects the relationship
between metrics. The inner correlation for L1 data cache misses
and L2 cache misses (PAPI_L1_DCM-PAPI_L2_TCM) starts at 0.8
and dramatically drops to less than 0.5 at around a 2.25% in-
crease in instructions. The inner correlation of L1 data cache misses
and TLB misses (PAPI_L1 _DCM-PAPI_TLB_DM) has a similar, but
slightly less dramatic change. Instrumentation overhead did not sig-
nificantly perturb the hardware metric pairs that are omitted from
the figure. Of the other benchmarks, sim-outorder exhibits similar
behavior.

It is surprising that such a low instrumentation overhead (about
2.25% increase in instructions) causes such a dramatic perturba-
tion. This goes against the common wisdom that if we perturb the
instruction count or cycles by a small amount, the perturbation will
also be small.

Figure 5 illustrates an explanation for the significant drop in
Figure 4. It shows the signals of the two metrics involved in the
PAPI_L1 DCM-PAPI_L2_TCM curve of Figure 4. Row LI shows
PAPI_L1.DCM and row L2 shows PAPI_L2_TCM. Column Good
shows the signals for the last run before the drop in Figure 4, while
column Perturbed shows the signals for the first run after the drop.
The figure shows that the L1 signal changes drastically from Good
to Perturbed. Row S shows the signal of the one additional soft-
ware metric, spm_func_search, collected in the Perturbed run.
For the Good run, the L1 and L2 signals are correlated. In partic-
ular, the bump in L2 in the middle of the signal is reflected in L1.
For the Perturbed run, however, the L1 misses do not follow this
bump as clearly. This phenomenon is reflected in the Spearman’s
correlation coefficient dropping to less than 0.5. The number of
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Figure 6. Inner correlation depending on instrumentation over-
head in bzip

events counted by spm_func_search is particularly high during
the bump. This is an indication that the additional instrumentation
needed for collecting that metric causes the bump in the L1 signal
to disappear.

Figure 6 illustrates that additional instrumentation overhead
does not always lead to additional perturbation. The figure shows
the inner correlation of two metric pairs in bzip. As the number
of executed instructions increases by up to 2.5% (more than the
increase needed to significantly perturb the inner correlation of
sjeng), the inner correlation barely changes. The mcf benchmark
is similarly unaffected by additional instrumentation.

3.5 Evaluation of outer perturbation

Figure 7 illustrates that instrumentation overhead can also impact
the relationship between two metrics in different traces. The x-
axis shows instrumentation overhead as the percentage increase in
executed instructions, and the y-axis represents outer correlation.
Each line is the outer correlation of a metric with itself, where one
of the trace files is the baseline trace that only collects hardware
metrics. As with Figure 4, each point represents a run that contains
all software metrics from the point to its left plus one additional
metric. Figure 7 gives the data for sim-outorder; sjeng and mcf
exhibit similar trends.

The figure illustrates that the outer correlation for all pairs of
hardware metrics are significantly affected by the increase in in-
strumentation overhead. The outer correlation of branch mispre-
dictions with itself (PAPI_BR_MSP) is most affected, while the outer
correlation of translation lookaside buffer (TLB) misses with itself
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Figure 7. Outer correlation depending on instrumentation over-
head in sim-outorder

(PAPI_TLB.DMN) is least affected. Branch mispredicts drops from a
correlation of above 0.9 to 0.3 with only 0.2% increase in executed
instructions. Less dramatically, TLB misses drop from a correlation
of 0.85 to below 0.6. Interestingly, as we add software metrics after
the drop, the outer correlation for the metrics recovers. This im-
plies that the instrumentation of different software metrics interact
in subtle, and not always obvious, ways.

This graph illustrates that low instrumentation overhead can
radically change the relationship, from being highly correlated to
being poorly correlated, between two metrics collected in different
traces.

Figure 8 shows the outer correlation for a different benchmark,
bzip. It illustrates that the outer correlation between the same hard-
ware metric in two different traces does not always have to be im-
pacted by the overhead of additional instrumentation. While the
outer correlation in sim-outorder was significantly affected by an
overhead of less than 1%, the outer correlation in bzip is largely
unaffected even with an instrumentation overhead of 2.5%.

To summarize, our results suggest that perturbation does not de-
pend on the number of instrumentation instructions that we execute.
Thus, our technique for detecting perturbation is useful even if the
instrumentation overhead is very small.

4. Discussion

The introduction described our methodology for collecting soft-
ware metrics while keeping perturbation down. Section 2 described
our approach for quantifying perturbation and Section 3 demon-
strated our metrics with C programs. However, before our method-
ology is fully usable we have two open problems we need to ad-
dress:

1. As we saw in Section 3 adding more instrumentation does not
always increase perturbation; in some cases it may actually de-
crease perturbation. Thus, finding subsets of metrics to collect
together without excessive perturbation is a non-trivial prob-
lem. The most general, but prohibitive, approach will try all

Figure 8. Outer correlation depending on instrumentation over-
head in bzip

possible partitionings into subsets. We will investigate greedy
approaches to this problem.

2. Our mechanism for detecting perturbation assumes that if there
is any significant perturbation it will perturb the relationship be-
tween two hardware metrics. This may not be the case in gen-
eral: for example, a given perturbation may not affect relation-
ship between hardware metrics but may affect the relationship
between two software metrics or one software and one hard-
ware metric. We do not know if this phenomenon happens in
practice; we will investigate this further in the continuation of
this work.

5. Related work

Prior work is rather limited in the field of trace perturbation, and
can be broken into two distinct categories (i) perturbation measure-
ment and (ii) perturbation management.

Indeed, our work falls into the category of perturbation mea-
surement; we have provided an operational definition of perturba-
tion, as we define a program to be perturbed if a set of hardware
performance metrics significantly change, as a function of adding
measurement instrumentation, and we have provided results that
measure these fluctuations. Daigle et al[4] also provide an opera-
tional definition of perturbation when collecting program address
references. Their approach looks at aggregate runtime slowdown
as a function of the type of measurement instrumentation (low or
heavy) as well as the overall increase in process memory. Using
these metrics, the authors provided a means to describe when a
program was dominated by measurement infrastructure. While use-
ful for their performance analysis tasks, the metrics (runtime slow-
down and memory increase) they used are far too coarse grained
to accurately capture the true behavior of a program running on
today’s modern hardware.

Perturbation management is the process whereby the perfor-
mance analyst realizes and accepts that any measurement in-
frastructure will necessarily perturb the program being measured.
This approach builds models of perturbation incurred by an ob-



servation, and uses those models to factor out any measurement
perturbation from the final trace presented to the performance an-
alyst [9, 8, 10, 13]. This approach is limited by two main issues.
First, the ability of one to recreate a true trace is only as good
as the model one is able to build, and building an accurate model
is incredibly hard. Indeed that is why [9] use a linear model of
perturbation. Secondly, prior work only looked at overall program
runtime as a means to measure perturbation. Our work here shows
that even with a 2.5 % increase in instructions, underlying hard-
ware metrics are severely perturbed, and thus these definitions of
perturbation are too coarse grained.

6. Conclusions

It is impossible to measure a real computer system without perturb-
ing its behavior. This is especcially the case when the measurement
involves adding code to a system, which is the case when we want
to collect software metrics.

As performance analysts, we realize and accept that we cannot
eliminate perturbation, however, we can detect it. In this paper,
we have identified two mechanisms to quantify perturbation: inner
and outer perturbation. Using inner perturbation, a performance
analyst can determine when a run has been perturbed by collecting
too much information. Using outer perturbation, the performance
analyst can determine if she can use the data from multiple runs as
if the data was all from a single run.

Our evaluation of these mechanism lead to two results. First,
we are surprised to find that even with minimal instrumentation
overhead, which increased instructions executed by less than 3%,
high perturbation resulted, which prevented one from correctly
reasoning about metrics within a trace or across traces. Second, the
instrumentation of different software metrics interact in subtle, and
not always obvious, ways making the impact of instrumentation on
perturbation difficult, if not impossible, to predict.

Finally, we outline a methodology based on these mechanisms
to collect measurement data while avoiding perturbation.
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