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Abstract
We show two severe problems with the state-of-the-art in empirical
computer system performance evaluation, observer effect and mea-
surement context bias, and we outline the path toward a solution.

1. Introduction
To evaluate an innovation in computer systems, performance an-
alysts measure execution time or other metrics using one or more
standard workloads (e.g., the SPEC benchmarks). The performance
analyst may carefully control the environment in which measure-
ment takes place, or themeasurement context, and repeat each mea-
surement multiple times. Finally, the performance analyst may use
statistical techniques to characterize the data. If the number of con-
figurations of the system under study is large, the performance eval-
uation may take weeks or occasionally even months of computer
time to collect. However, since we can often run different config-
urations and different workloads in parallel, performance analysts
typically collect the data that they need for a paper in a few days of
elapsed wall-clock time using using cheap commodity hardware.
In contrast the data collection process for natural and social

sciences is much harder. Natural scientist often expend enormous
effort and cost to design and conduct experiments that produce
credible and repeatable data. A single experiment in many scientific
domains can cost thousands of dollars and thus researchers expend
significant effort to ensure that they actually get useful data from
their experiments. Social scientists often expend months or more
of human effort to collect a single data set. They make great effort
to ensure that the data they collect is not tainted and use statistical
techniques to identify significant trends in the raw data.
In other words, computer systems researchers have it easy. Our

cost for collecting data is negligible compared to other scientists:
we easily generate reams of data for each paper and it typically
takes only a few days of wall-clock time. Unfortunately, while
cheap, the data that we collect may or may not be actually useful.
This paper shows how easy it is to produce poor (and thus mis-
leading) data for computer research and suggests techniques for
producing high-quality data. Unfortunately we find that there is no
free lunch: to gather high-quality data, performance analysts need
to work much harder than to collect poor-quality data.
What is “high quality” data? We define high-quality data as data

that captures the true behavior of the system that we are evaluating;
“poor quality” data is the dual of high-quality data. In this paper
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Figure 1. We see perturbation even if we collect only hardware
metrics.

we explore two common sources of poor-quality data. First, we get
poor-quality data if our data collection perturbs the behavior of the
system that we are measuring; this is often known as the “observer
effect”. We show that even a seemingly insignificant measurement
probe can dramatically alter system behavior; thus, perturbation is
much more common than most performance analysts probably re-
alize. Second, we get poor-quality data if we measure the system in
a particular set of contexts and that set does not capture the range of
reasonable contexts that a user of the system might encounter; this
is known as “measurement context bias”. We show that different
contexts (e.g., settings of environment variables or compiler flags)
favor different configurations of the system. Thus, the context can
show a particular configuration in an optimistic or a pessimistic
light; we cannot tell which one it will be in advance.
The remainder of the paper presents data on how easy it is to get

poor-quality data and suggests ways of dealing with it.

2. Poor-quality data due to the observer effect
Most approaches for measuring a system require us to insert probes
into the system. Even if we collect data using hardware perfor-
mance monitors (which the hardware automatically increments) we
still need probes to set up counters and to read out the values of the
hardware registers at selected points. We assume that if our probes
are insignificant so are any perturbation effects that occur due to
our observation. Section 2.1 shows that this assumption does not
hold. Section 2.2 discusses how we can deal with this.

2.1 How large is the perturbation
Figure 1 presents the total cycle count when we collect only hard-
ware metrics for SPECint 2006 benchmarks on a Pentium-4 work-
station. We used PAPI [2] to collect data from the hardware moni-
tors. We insert two set of calls to PAPI in our applications: one to



set up the counting at the beginning of the program and one to read
out the values of the counters at the end of the program. We need
one call per hardware metric to set up the counters but only one call
in total to read all the counters.
The leftmost point (x-axis label is 1) is the cycle count when we

collect only one hardware metric, TOT CYC, and is the baseline
for subsequent points along the x-axis. Each subsequent point adds
a new hardware metric. We confirmed each point in these graphs
(and others in this paper) with three runs each since we wanted to
make sure that our results were not an artifact of inter-run varia-
tion. We see that adding hardware metrics can significantly change
the cycle count; our “benign” observation changes system behav-
ior. In other experiments we established that with the exception of
the libquantum benchmark, our programs exhibit minimal inter-run
variation; thus the variation in Figure 1 is indeed due to measure-
ments.
Figure 1 is surprising. How can such little observation change

system behavior? The change in cycles does not come from the
increments because the hardware increments the metrics without
any cost. The culprit for the change in cycles must be the calls to
set up the hardware monitors or the calls to read out the hardware
monitors. It seems unlikely that a 6% change in the number of
cycles can be directly due to a handful of calls in relatively long
runs (our shortest run is over 13 seconds); in related work we
have found that a readout call to PAPI is at most a few thousand
instructions. Thus, we believe that the perturbation comes from
indirect effects of the calls. Specifically, inserting these calls in the
program affects code (and thus ultimately data) layout which can
interfere with branch predictors, instruction caches, etc.
Our graph above shows that collecting only hardware counters

can perturb data; Figure 2 shows that the perturbation is even
worse if we collect software counters; each counter measures some
software event (e.g., number of insertions in the database) on a
Pentium-4 workstation.
For each of the graphs, the x-axis gives the percent increase in

instruction count from the baseline due to instrumentation needed
to observe system behavior (baseline is the configuration with no
instrumentation). Note that in the most extreme case we increase
the instruction count by 2.0% (in mcf) and thus our instrumenta-
tion is not excessive: we would not expect instruction overhead to
significantly perturb the system.
Each graph contains one curve for each frequently occurring

hardware metric.1 The y-axis gives the change in the total counts
as a percentage of total counts with no instrumentation (i.e., the
baseline). Note that the different benchmarks use different scales
for the y-axis to best accommodate the total count data. We see that
adding instrumentation for observation can dramatically perturb
our runs.
We can draw two main conclusions from our results.
First, perturbation due to observation is commonplace and dra-

matic. With the exception of hmmer, the total counts of all bench-
mark changes dramatically as a result of adding instrumentation.
Second, perturbation due to observation is unpredictable.

Specifically the amount of instrumentation has no bearing on the
amount of perturbation. Even adding instrumentation to just read
the values of hardware registers twice during an entire run can
change total counts in either direction. This is totally counter in-
tuitive. For example, we expected some kind of a monotonic re-
lationship between amount of instrumentation and change in total
counts; we see this is clearly not the case. Finally, we cannot predict
perturbation in one metric using perturbation in another metric. We
see many instances of this in our data. For example, in h264ref the

1 By “frequently occurring” we mean metrics that occur at least once every
20 cycles in the original, uninstrumented program.

change in total counts of TOT CYC due to increment perturbation
is relatively modest (8% between its lowest and highest point) but
the change in RES STL is dramatic (over 80%).

2.2 How to avoid the observer effect
We believe that there cannot be a general approach for avoiding the
observer effect. Thus, performance analysts need to take measures,
based on how they intend to use the data, to ensure that perturbation
due to their observation does not mislead them. In this section, we
describe the strategy we have used in our work; this is not an easy-
to-use or a fully general strategy, but it works at least for our needs.
In our work on understanding the performance of Java systems,

we need to collect traces of both software and hardware metrics. We
reason over these metrics in an attempt to explain poor performance
in some part of the program execution. If our measurements perturb
the system, then we may arise at an incorrect conclusion about the
cause of the poor performance.
To make sure that measurement perturbation is not leading

us along the wrong path, we employ validation throughout our
exploration. A validation step checks if our understanding of the
system so far is correct by acting on the understanding and then
confirming that the outcome is consistent with our understanding.
In other words, we are proposing causality analysis which other
scientific disciplines already contend with [10].
To see how this works, let’s suppose we notice (by visualizing

a trace) that at certain points in a program’s execution there are
a large number of cache misses. Analyzing our trace may lead
us to believe that the representation of a particular data structure
is resulting in a large working set size and thus cache misses.
This belief may be correct or it may be an artifact of observation
perturbation. To validate this belief, we change our data structure
so that, at least for our test runs, it consumes less space (e.g., by
using smaller arrays, because we know that our test runs can run
with smaller arrays). We then regenerate the trace and confirm that
the cache misses have changed accordingly. If they have changed
accordingly then we have a strong reason to believe that our belief
is correct; if they have not then we have a strong reason to believe
that our belief is incorrect due to perturbation.
This approach does not avoid perturbation from observation, but

tolerates it: if we reach the correct understanding about our sys-
tem’s performance then perturbation does not matter. Just because
we have reached the correct understanding in this case does not
mean that our measurements did not perturb our system; if we use
the same data for some other task we may find the perturbation is
large enough that it leads us to an incorrect conclusion. We have
applied this methodology to all of our case studies [4].

3. Poor-quality data due to measurement context
bias

In order to get reproducible and deterministic results, performance
analysts typically control and fix the measurement context for a set
of experiments. For example, performance analysts use the same
version of the compiler, same compiler flags, same OS, same en-
vironment variables, lightly loaded machine, etc., to factor out the
effect of the measurement context on their experiments. Underlying
this methodology is the assumption that results they obtain in one
measurement context carry over to other measurement contexts.
For example, let’s suppose a researcher comes up with an in-

novation X to a system S. To demonstrate the benefit of X , the
researcher can run both S and S + X on standard workloads and
compare the elapsed times for S and S + X on each workload. If
the elapsed times for S+X are on average smaller than the elapsed
times for S, then the researcher may conclude that X is a worth-
while innovation. However, this may or may not be the case. For
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Figure 2. Increment perturbation and its effect on total counts and correlation
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Figure 3. The mean and 95% confidence interval of the mean for
the change in perlbench’s run-time as an environment variable’s
value is changed on Pentium 4.

example, if the measurement context is biased toward S + X over
S for these workloads, it will inflate the benefit due to X and may
even be totally misleading (e.g., X may actually degrade perfor-
mance but it appears to improve performance).
This phenomenon is not specific to computer systems. In the

social sciences, researchers incorporate data from subjects with
diverse backgrounds so that they can factor out the effect of the
subject’s background on the data. For example, collecting data on
work habits of graduate students at MIT and generalizing that to all
students is clearly incorrect. Yet, in computer systems we routinely
do this: we collect data in a single or a few measurement contexts
and expect that the results hold for all measurement contexts.

3.1 How measurement context affects system behavior
Figure 3 illustrates the effect of a seemingly insignificant change in
the measurement context: changing the size of the environment by a
few bytes. The measurement contexts differ in the size of the value
of a UNIX environment variable. A point (x,y) on the graph says
that if the environment variable’s value is x characters long, then
the run-time of the perlbench is y% longer than if the environment
variable did not exist. Each point gives the mean of 15 runs and
the error bars give confidence intervals of the mean with a 95%
confidence.
The results are surprising: this insignificant change can change

the program’s execution time by -1% to +5%.Worse, the effects are
not predictable: increasing the size of the environment variable’s
value can improve or degrade performance! Each measurement
context has its own bias. Considering that many innovations give
only a few percent of improvement in performance, this bias can
easily overwhelm an innovation’s true behavior.
Which of the points in Figure 3 represents the true performance

of perlbench? If we had measured the performance of perlbench
as part of an effort to evaluate a compiler optimization, then which
measurement context do we use? It may very well be that one mea-
surement context gives the best performance for perlbench without
optimizations while another measurement context gives the best
performance for perlbench with optimizations. If we pick one of
these extreme points, then we get skewed results: we either believe
that the optimization is highly effective or highly ineffective. Thus,
when evaluating an innovation it is dangerous to use just a single
measurement context: chances are high that we will get at least
somewhat skewed results.
Figure 4 demonstrates how ignoring the measurement context

can lead to incorrect conclusions on a Core2 duo. The x-axis gives
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Figure 4. Quantifying libquantum’s performance difference be-
tween optimization levels O2 and O3 on a Core2 Duo.

the performance change in going to optimization levelO3 fromO2
(negative numbers mean that O3 gives a speedup) when using the
gcc compiler and the SPECint 2006 libquantum benchmark. The
y-axis gives the number of times we observed a given speedup. To
generate the data in this graph we measured the benefit of each op-
timization level in a large number of measurement contexts. Each
measurement context shifts the position of code and data in the
benchmark executable file. The white “default” square gives the
speedup of O3 over O2 when we use a single measurement con-
text that gcc provides; this speedup is 12.5%. The black “all” square
gives the speedup of O3 over O2 when we statistically combine
the data from our many measurement contexts; this speedup is not
statistically significant. In other words, if we use a single measure-
ment context we may find that O3 is 12.5% better than O2when in
reality this improvement is an artifact of the measurement context.

3.2 How to avoid issues with the measurement context
Our data shows that we cannot use a single measurement context
and expect to get representative results. Social scientists solve an
analogous problem by collecting data from diverse subjects and
then use statistical techniques to make statements about the whole
population. Our proposed approach is inspired by this: we collect
data from many different measurement contexts and use statistical
techniques to compare distributions.
How do we generate the different measurement contexts? In our

experience so far, measurement contexts often affect the perfor-
mance of systems by changing how the system interacts with the
many buffers (e.g., TLBs and caches) in modern microprocessors.
The measurement context changes the mapping of the system to
these buffers and thus changes how the system interacts with the
buffers. Thus, we currently generate measurement contexts via a
process we call intervention. We shift code and data so as to induce
different interactions with the hardware buffers. We recognize that
we may not cover the full space of measurement contexts using
this approach but we find that our space does explore an interesting
space of measurement contexts.
Figure 5 illustrates our methodology. The graph evaluates three

optimization levels for mcf: the O0-O1 points compare optimiza-
tion level O1 with O0, O1-O2 points compare optimization level
O2 with O1, and O2-O3 points compare optimization level O3
with O2. For each pair of optimizations we have one point for one
measurement context. The x-axis value gives the performance im-
provement obtained using the measurement context corresponding
to the point. In other words, the x-axis gives the speedups we may
obtain by using the prevalent methodology of using a single mea-
surement context. The y-axis value gives the performance improve-
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Figure 5. One versus many measurement contexts.

ment when we combine the results for all measurement contexts;
i.e., our approach. Because we explore many measurement con-
texts, we see horizontal streaks which indicate differences between
the speedup obtained from different measurement contexts. We get
a single value on the y-axis for each pair of optimizations because
the y-value combines information from all measurement contexts.
From Figure 5 we see that when we use only a single mea-

surement context we can get contradictory results. For example,
if we use a single measurement context to compare O1 to O2 we
may conclude thatO2 improves performance or it degrades perfor-
mance, depending on the context. Our approach combines results
from many measurement contexts and thus reduces measurement
context bias in our data.

4. Related Work
Korn et al. [7] evaluate the perturbation due to counter readouts
by comparing the values measured on a MIPS R12000 with results
from SimpleScalar’s sim-outorder simulator and with analytical in-
formation based on the structure of their micro-benchmarks. Their
evaluation is based on a small number of simple micro-benchmarks
on a simple processor and they only consider total counts. Maxwell
et al. [8] extends this work to three new platforms, POWER3, IA-
64, and Pentium. This extension still focuses on micro-benchmarks
and is limited to aggregate event counts. We analyze the perturba-
tion of real benchmarks, and, in stark contrast to the above work,
we find that perturbation is non-monotonic and unpredictable with
respect to the amount of instrumentation.
Researchers associated with the PAPI group at the University of

Tennessee at Knoxville have reported on the overhead of their pub-
lications in which they present PAPI. Moore [9] discusses accuracy
issues when using PAPI for counting events. They report the over-
head of starting, stopping, and reading counters in processor cycles
on different architectures, but they do not study how this overhead
affects measurements in real benchmarks.
In their work on flow and context sensitive profiling [1], Am-

mons et al. describe perturbation of hardware counters due to soft-
ware instrumentation. To determine the perturbation due to their
instrumentation, they compare the total metric values in a lightly
instrumented system to the total metric values produced by their
flow and context sensitive profiling system. In contrast, we show
that one cannot generally predict perturbation in one measurement
approach (e.g. a heavily instrumented system) by measuring per-
turbation in a different measurement approach (e.g. a lightly in-
strumented system).
Most fields of experimental science use inferential statistics [5]

to determine whether a specific factor (e.g. drug dosage) signifi-
cantly affects a response variable (e.g. patient mortality). Recent

work in our field strongly highlights the absence of this practice in
our area and advocates for the use of statistical rigor in software
performance evaluation [3, 6].

5. Conclusions
Data collection in computer systems research is easy when com-
pared to other sciences; we generate reams of data for each paper
and it typically only takes a few days of wall-clock time. However,
our collection efforts can easily produce “poor-quality data”; data
that can mislead our conclusions. In this paper we show how two
common measurement effects can produce poor-quality data. First,
we illustrate that the observer effect can dramatically perturb our
data. For example, we show that something as benign as collecting
aggregate metrics with hardware support can significantly perturb
our system. Second, we show that measurement context bias can
significantly affect the quality of our data. For example, we show
how even something as innocuous as changing the value of a UNIX
environment variables can significantly affect our data.
Both of these measurement effects have solutions; validation to

overcome the observer effect and intervention to overcome mea-
surement context bias. However, these are not turn-key solutions;
the validation, in particular, requires significant effort from the per-
formance analyst.
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