
Understanding Performance of Multi-Core Systems using
Trace-based Visualization

Peter F. Sweeney
IBM TJ Watson Research

pfs@us.ibm.com

Matthias Hauswirth
U. of Lugano, Switzerland

Matthias.Hauswirth@unisi.ch

Amer Diwan
U. of Colorado at Boulder

diwan@cs.colorado.edu

Marina Biberstein
IBM Haifa Lab, Isreal

biberstein@il.ibm.com

Yuval Harel
IBM Haifa Lab, Isreal

harely@il.ibm.com

ABSTRACT
Hardware designers are adding additional cores to chips in
an attempt to improve throughput performance. These multi-
core systems share hardware resources at multiple levels of
the system. The question is when multiple applications run
on the same chip, how do they interact with the shared re-
sources, and how do these interactions effect performance?
Traditional profile based approaches that aggregate statis-
tics across the complete execution of an application are in-
adequate to illuminate these interactions, because temporal
causality is lost in the aggregation of the data.

This paper argues that analyzing multi-core systems re-
quires trace-based statistics and flexible visualization tech-
niques to analyze the trace data.

1. INTRODUCTION
Due to power and thermal constraints, hardware designers

have had to look for performance in innovative new ways
other than increasing clock speeds. The current trend is
to increase parallelism at the task level by placing multiple
cores on a chip and by adding hardware support for multiple
hardware threads on a core. Although these new hardware
features exploit the increase in silicon that is available on
a chip, it is not always clear how software can exploit the
trend’s promise for increased performance.

Specifically, these new hardware features share resources
at multiple levels of the system. For example, the Intel Pen-
tium Processor Extreme microprocessor has dual cores on
a chip that share a front side bus. In addition to sharing
a memory bus, the PowerPC POWER5 microprocessor has
dual core’s on a chip that share the on chip L2 cache and can
access off chip L3 caches of other cores. Both microproces-
sors provide multiple hardware threads per core where each
thread shares the core’s caches, pipeline, issue queues, and
functional units.1 The question is when multiple applica-
tions run on the same chip, how do they interact with the

1Intel’s hyper threading (HT) technology and IBM’s simul-
taneous multi-threading (SMT) both support multiple hard-
ware threads per core.

This paper appeared and was presented at the First Workshop on Software
Tools for Multi-Core Systems (STMCS06), March 26, 2006, Manhattan,
NY.

shared resources, and how do these interactions effect per-
formance?

Summary statistics, which are collected for the complete
run of an application, are not sufficient to identify the ef-
fect of task parallelism on the shared resources, because
temporal causality is lost in the aggregation of data. To
capture temporal causality, trace-based statistics need to
be collected, where the statistics are periodically collected
throughout the execution of an application However once
collected, trace-based statistics require visualization tech-
niques to identify the interactions between processors and
shared resources. Once the interactions have been charac-
terized, mechanisms are required to tied the characterization
back to the source code.

We have successfully gathered trace-based statistics across
multiple layers of the execution stack (application, runtime
environment, OS and hardware) and used this data to solve
performance anomalies in Java applications [4], and to un-
derstand the impact of mapping data structures to large
pages in scientific applications [1]. In both cases, visualiza-
tion of the trace-based statistics over time was essential to
understand what was going on. We believe that this ap-
proach will work well to understand how shared resources
are affected by logical processors (multiple cores on a chip
and multiple hardware threads on a core) that share these
resources.

2. EXAMPLE
Although we currently don’t have traces from either a chip

with multiple cores or a core that runs multiple hardware
threads, we do have traces from a shared memory machine
(SMM) where memory is shared between processors and the
L3 cache of one processor can be be remotely accessed by an-
other. We use this trace to illustrate processor interactions
with shared resources.

2.1 Experimental Methodology
Our traces were collected on a 4-way PowerPC POWER4

1.2 GHz shared memory machine (SMM) running AIX 5.1.
In this machine, each chip has a single processor. Each
processor has an on-chip L2 cache, its own off-chip L3 cache,
and a processor can remotely access the L3 caches of other
cores.

Our traces were generated from a modified version of Jikes

1



RVM [5], an open source research virtual machine. Jikes
RVM does its own Java thread scheduling by multiplex-
ing Java threads onto underlying operating system threads.
When Jikes RVM runs on a SMM, it creates an OS thread
for each processor. At each thread switch, the modified ver-
sion of Jikes RVM writes out to a trace file the statistics for
the Java Thread that was just running. Jikes RVM uses a 10
milliseconds scheduling time quantumn.2 For more details
the reader is referred to [6]. In previous work, we found that
Java thread-specific, trace-based statistics were important,
because different Java threads have significantly different
behavior [4].

We traced the execution of a multithreaded Java applica-
tion, pseudojbb, a modified version of the SPECjbb2000 [2]
(Java Business Benchmark) that evaluates the performance
of server-side Java by modeling a three-tier application server.
For benchmarking purposes, pseudojbb was modified to run
for a fixed number of transactions (120,000 for this exper-
iment) instead of running for a fixed amount of time. We
configured pseudojbb to create two application threads and
then executed this configuration on two processors of the
SMM.

2.2 Visualization
In this example, we focus on the L3 cache behavior of the

two application threads running on two processors. Figure 1
is a screen shot of the Performance Explorer, a visualization
tool, In the upper window, the horizontal-axis is time and
the vertical dimension is broken up into three strips that are
labeled ”Application Thread 1”, ”Application Thread 2”,
and ”remote L3 accesses”. Each strip contains one or more
layers, and a layer plots a metric as a signal of line segments
over time. The length of the line segment is its duration
and its height is the metric’s value for that time interval.
All threads, other than the two application threads, have
been filtered out of the plots. In addition, we have zoomed
into a small time period of the psuedojbb’s execution.

The first strip of in the upper window of Figure 1, labeled
”Application Thread 1”, plots two metrics as signals: the
gray signal is the number of remote L3 cache accesses divided
by cycles, and the solid signal is the number of local L3 cache
accesses divided by cycles. We normalized a metric’s signal
by cycles to ensure that any change in magnitude is due to
an intrinsic change in a metric’s value and not due to an
increase in the length of the time interval.

The second strip, labeled ”Application Thread 2”, plots
the same two signals that were plotted in the first strip, but
for the second application thread. The third strip, labeled
”remote L3 accesses”, plots the remote L3 cache accesses
divided by cycles for the two application threads. The gray
signal is the first application thread’s signal and the solid
signal is the second application thread’s signal.

In all three strips, the y-axis’s lower and upper bounds
for a particular metric has been manually adjusted to be
the same across the strips, although different metrics may
have different upper bounds. Because the x- and y-axis di-
mensions are consistent across strips, it allows us to visually
make some observations. First of all, in the first two strips,
the first application thread has more remote L3 cache ac-

2A Java thread may be run for less then 10 milliseconds if
it yields control, or if it obtains control from another thread
that has yielded control, and thus does not get the full 10
milliseconds.

cesses and fewer local L3 cache accesses than the second
application thread in the second strip. The difference can
be seen as the distance between the two signals in each strip.
This difference implies that there is an imbalance in the way
that the application threads accesses the L3 caches. Sec-
ond, the local and remote L3 cache accesses for a particular
thread seem to correlate reasonable well visually; that is,
when the line segment in one signal goes up the correspond-
ing line segment in the other signal also goes up, and vice
versa. Finally, in the third strip, which plots the remote L3
cache accesses for both application threads, the signals do
not seem to correlate visually; that is, when one line seg-
ment for one signal goes up the corresponding line segment
for the other signal may or may not go up.

3. CONSTRUCTING VIEWS
From this simple example that visualizes the local and re-

mote L3 cache accesses over time for two application threads
running on two processors, we were able to draw some con-
clusions, because of the signals were juxtaposed either in the
same or separate strips. This juxataposing is easily achieved
with PE’s graphical user interface (GUI) for constructing
strips and layers. The lower window, which is labeled ”Strip
Array Properties” in Figure 1, is the GUI for manipulating
the layers in a strip. The layer that is defined in this win-
dow is the local L3 cache accesses per cycles signal for the
application thread that is illustrated in the first strip. Each
layer has a trace attribute that determines which trace the
data that is to be plotted comes from; a record type (”record
list”) that determines which record type in the trace to find
the data; and a value attribute that determines which fields
in the trace are used to plot the signal. The value attribute
determines the y-axis height of the signal at a given time
interval. By changing the value attribute, one can quickly
visualize a signal for different metric.

A filter attribute allows the data from a subset of the
records to be plotted by filtering the value of a field. In this
example, the thread id (tid) is selected to be ”15”, which
happens to be one of the application’s threads. The start
and end time attributes identify the fields in the record that
define the start and end of the line segment that is plotted.
Finally, the color attribute determines the color of the signal.

The plus (+) and minus (-) buttons in the lower left hand
corner of the lower window allow new layers to be added and
old layers to be deleted. Final, each layer has a background
layer that defines the color of background and an axis layer
that defines whether and where vertical lines should be draw,
if at all, and their color. In this example, all vertical lines
have been eliminated from the strips.

In this example, each strip has two layers, however, the
user can add as many layers as they would like. For example,
we have constructed strips for MPI applications that have
dozens of layers, one layer for each type of MPI function.

4. DISCUSSION
We hope that the reader sees the pontential for using

trace-based visualization to understand the interaction be-
tween multiple cores and multiple hardware threads on shared
resources. The traces that we use in this paper came from a
PowerPC POWER4 derivative that does not support hard-
ware threads and has only one processor per chip. In such a
machine, resource sharing is limited. Nevertheless, we were

2



Figure 1: PE screen dump for pseudojbb with two application threads run on two processors of a shared
memory machine.

3



able to illustrate how local and remote L3 cache accesses
differ between multiple application threads that are running
concurrently. The flexibility to construct views that visu-
ally illustrate the impact of sharing resource between logical
processors is an important capability that is needed to un-
derstand performance anomalies that may arise by hardware
support for task parallelism.

5. GETTING BACK TO SOURCE CODE
In many cases, tying the behavior visualized in the trace-

based statistics back to the source code can help to under-
stand what optimization is most appropriate to apply. For
example, phase markers could be added to the source code
to generate a trace record whenever a particluar phase is
entered or left. The phase markers could be visualized as a
event marker layer. Correlating phase markers with cache
behavior provides insight into each phase’s impact on data
locality. Furthermore, the interaction between phases on
logical processors that share resources could be used to bet-
ter affinity schedule applicaitons that share resources. For
example, if the two distinct phases in different applications
have poor data locality when executed concurrently, then
scheduling these phases to run at different times would be a
good scheduling decision.

6. HARDWARE PERFORMANCE MONITORS
Traced-based visualization of logical processors assumes

hardware performance monitor (HPM) support that can
capture hardware events concurrently that are generated by
multiple cores on the same chip and by multiple hardware
threads on the same core. Without this HPM support, un-
derstanding the interactions between logical processors on
shared resources is difficult, if not impossible.

7. FUTURE WORK
Performance Explorer is a stand alone tool that is written

from Swing components in Java Foundation Classes and is
available as open source from the download page of the Jikes
RVM home page [5]. We are in the process of porting PE’s
functionality to eclipse [3], and open source integrated de-
velopment environment. Integrating PE’s functionality into
eclipse provides a framework in which PE can interact with
other tools. For example, the eclipse framework will provide
the ability to navigate between PE’s views and source code
or other graphical or statistics views.

We are in the process of porting the Jikes RVM tracing
infrastructure of IBM’s POWER5 machines and Intel’s dual
core processors. The step is necessary for our future explo-
ration of multi-core and multi-threaded systems.

7.1 Acknowledgements
This work is supported by NSF ITR grant CCR-0085792,

NSF Career CCR-0133457, an IBM faculty partnership award,
and Defense Advanced Research Project Agency Contract
NBCH30390004. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsors.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] Călin Caşcaval, Evelyn Duesterwald, Peter F. Sweeney, and

Robert W. Wisniewski. Multiple page size modeling and
optimization. In Proceedings of the Fourteenth International
Conference on Parallel Architectures and Compiler
Technology (PACT05). IEEE, Sep. 2005.

[2] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark).
http://www.spec.org/jbb2000.

[3] eclipse. http://eclipse.org.
[4] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and

Michael Hind. Vertical profiling: Understanding the
behavior of object-oriented applications. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA04). ACM Press, October 2004.

[5] Jikes Research Virtual Machine (RVM).
http://www.ibm.com/developerworks/oss/jikesrvm.

[6] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon,
Perry Cheng, Amer Diwan, David Grove, and Michael Hind.
Using hardware performance monitors to understand the
behavior of Java applications. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium
(VM’04), May 2004.

4


