
Using Hardware Performance Monitors
to Understand the Behavior of Java Applications

Peter F. Sweeney1 Matthias Hauswirth2∗

Brendon Cahoon1 Perry Cheng1 Amer Diwan2 David Grove1 Michael Hind1

1IBM Thomas J. Watson Research Center
2University of Colorado at Boulder

Abstract

Modern Java programs, such as middleware and application
servers, include many complex software components. Im-
proving the performance of these Java applications requires
a better understanding of the interactions between the appli-
cation, virtual machine, operating system, and architecture.
Hardware performance monitors, which are available on most
modern processors, provide facilities to obtain detailed per-
formance measurements of long-running applications in real
time. However, interpreting the data collected using hardware
performance monitors is difficult because of the low-level na-
ture of the data.

We have developed a system, consisting of two compo-
nents, to alleviate the difficulty of interpreting results ob-
tained using hardware performance monitors. The first com-
ponent is an enhanced VM that generates traces of hardware
performance monitor values while executing Java programs.
This enhanced VM generates a separate trace for each Java
thread and CPU combination and thus provides accurate re-
sults in a multithreaded and multiprocessor environment. The
second component is a tool that allows users to interactively
explore the traces using a graphical interface. We imple-
mented our tools in the context of Jikes RVM, an open source
Java VM, and evaluated it on a POWER4 multiprocessor. We
demonstrate that our system is effective in uncovering as yet
unknown performance characteristics and is a first step in ex-
ploring the reasons behind observed behavior of a Java pro-
gram.

1 Introduction

Modern microprocessors provide hardware performance
monitors (HPMs) to help programmers understand the low-
level behavior of their applications. By counting the oc-
currences of events, such as pipeline stalls or cache misses,
HPMs provide information that would otherwise require de-
tailed and, therefore, slow simulations. Because the informa-
tion provided by HPMs is low-level in nature, programmers

∗Work done while a summer student at IBM Research in 2003.

still have the difficult task of determining how the informa-
tion relates to their program at the source level. This paper
describes a system that alleviates some of this difficulty by
relating HPM data to Java threads in a symmetric multipro-
cessor environment (SMP).

Our system overcomes the following four challenges in in-
terpreting HPM data for Java programs. First, because a Java
virtual machine’s rich runtime support uses the same hard-
ware resources as the application, resource usage of the VM
threads needs to be distinguished from those of the applica-
tion. Second, because Java applications often employ mul-
tiple threads, each thread’s resource usage needs to be dis-
tinguished. Third, because the characteristics of even a sin-
gle Java thread may vary during its execution it is important
to capture the time-varying behavior of a thread. Fourth, be-
cause in a SMP environment a single Java thread may migrate
among several physical processors, the performance charac-
teristics of each thread and CPU combination need to be at-
tributed correctly.

Our system consists of two components: an enhanced VM
that generates traces of hardware events and a visualization
tool that processes these traces. The enhanced VM, an exten-
sion to Jikes RVM (Research Virtual Machine), accesses the
PowerPC HPMs to generate a trace from a running applica-
tion. The trace consists of a sequence of trace records that
capture hardware performance events during the length of a
thread scheduler quantum for each processor. In addition to
calculating aggregate metrics, such as overall IPC (instruction
per cycle) for each thread, these traces allow one to explore
the time-varying behavior of threads, both at application and
VM level.

The output of the trace generator is too large to be im-
mediately usable. For example, one thirty-second run has
almost sixty thousand events in its trace. The visualization
tool allows users to interactively explore the traces and to
compare multiple metrics (e.g., cache misses and memory
stalls) graphically and side-by-side. In this way a user can
explore hypotheses interactively (e.g., are metrics A and B
correlated?).

We demonstrate the usefulness of the system by applying it

to a variation of the SPECjbb2000benchmark. We show that
the system is effective in identifying performance anomalies
and also helps us to explore their cause.

To summarize, our contributions are as follows:

• We describe an extension to Jikes RVM to access Pow-
erPC HPMs and accurately attribute them to Java threads
in a SMP environment. Although many prior systems
(such as DCPI [5] and OProfile [26]) give users access
to HPMs, we believe ours is the first system that gener-
ates Java thread-specific traces over time of HPM data
for multithreaded applications on a multiprocessor.

• We present thePerformance Explorer , a visual-
ization tool for interactively and graphically understand-
ing the data.

• We use our tools to identify performance anomalies in
our benchmark and also to explore the cause of the
anomalies. Explaining the cause of the anomalies was
tricky due to the complexity of both the software (which
uses hard to understand features such as adaptive compi-
lation and garbage collection) and the hardware (which
employs an elaborate memory system design). Our vi-
sualization tool was invaluable in this exploration, but
we realize that there is still more work to be done in this
area.

The rest of this paper is organized as follows. Section 2
provides the background for this work, including an overview
of Jikes RVM and the existing mechanism for accessing the
PowerPC HPMs under AIX. Section 3 describes the design
and implementation of the VM extension mechanism for
recording HPMs. Section 4 introduces the visualization tool.
Section 5 illustrates how the tool can be used to help under-
stand the hardware performance of Java applications. Sec-
tion 6 discusses related work. Section 7 outlines avenues for
future work and Section 8 draws some conclusions.

2 Background

This section provides the background for this work. Sec-
tion 2.1 provides an overview of the existing Jikes RVM in-
frastructure that this paper uses as a foundation. Section 2.2
summarizes hardware performance monitors on AIX.

2.1 Jikes RVM

Jikes RVM [19] is an open source research virtual machine
that provides a flexible testbed for prototyping virtual ma-
chine technology. It executes Java bytecodes and runs on
the Linux/IA32, AIX/PowerPC, Linux/PowerPC platforms,
and OS X/PowerPC platforms. This section briefly provides
background on a few relevant aspects of Jikes RVM. More
details are available at the project web site [19] and in survey
papers [2, 12, 6].

JVM

Processors

Operating
 System

. . .

 Java
Application

 Java
Thread 1 . . . Java

Thread 2
 Java
Thread I

Hardware Performance Monitor Extensions

 Java
Thread M

 Java
Thread I+1

 Java
Thread I+2

 OS
Thread 1

 OS
Thread 2

 OS
Thread N. . .

 Performance Monitor API

. . . Proc 1

Perf Ctr

 Proc 2

Perf Ctr

 Proc P

Perf Ctr

Figure 1: Architectural overview.

Jikes RVM is implemented in the Java programming lan-
guage [3] and uses Java threads to implement several subsys-
tems, such as the garbage collector [10] and adaptive opti-
mization system [6]. Thus, our HPM infrastructure provides
insight both into the performance characteristics of Java pro-
grams that execute on top of Jikes RVM and into the inner
workings of the virtual machine itself. In particular, by gath-
ering per-Java-thread HPM information the behavior of these
VM threads is separated from application threads. However,
VM services, such as memory allocation, that execute as part
of the application thread are not separately distinguished.

As shown in Figure 1, Jikes RVM’s thread scheduler maps
its M Java threads (application and VM) ontoN Pthreads
(user level POSIX threads). There is a 1-to-1 mapping from
Pthreads to OS kernel threads. A command line argument
to Jikes RVM specifies the number of Pthreads, and corre-
sponding kernel threads, that Jikes RVM creates. The operat-
ing system schedules the kernel threads on available proces-
sors. Typically Jikes RVM creates a small number of Pthreads
(on the order of one per physical processor). Each Pthread
is called avirtual processorsbecause it represents an execu-
tion resource that the virtual machine can use to execute Java
threads.

To implementM -to-N threading, Jikes RVM uses compi-
ler-supported quasi-preemptive scheduling by having the two
compilers (baseline and optimizing) insertyieldpoints into
method prologues, epilogues, and loop heads. The yieldpoint
code sequence checks a flag on the virtual processor object;
if the flag is set, then the yieldpoint invokes Jikes RVM’s
thread scheduler. Thus, to force one of the currently execut-
ing Java threads to stop running, the system sets this flag and
waits for the thread to execute a yieldpoint sequence. The
flag can be set by a timer interrupt handler (signifying that
the 10ms scheduling quantum has expired) or by some other
system service (for example, the need to initiate a garbage
collection) that needs to preempt the Java thread to schedule
one of its own daemon threads. Because yieldpoints are a
subset of the GC safe points, i.e., program points where the

stack references (or GC roots) are known, only the running
Java threads need to reach a GC safe point to begin a stop-
the-world garbage collection; threads in the scheduler’s ready
queue are already prepared for a garbage collection.

2.2 AIX Hardware Performance Monitors

Most implementations of modern architectures (e.g. Pow-
erPC POWER4, IA-64 Itanium) provide facilities to count
hardware events. Examples of typical events that may be
counted include processor cycles, instructions completed, and
L1 cache misses. An architecture’s implementation exposes a
software interface to the event counters through a set of spe-
cial purpose hardware registers. The software interface en-
ables a programmer to monitor the performance of an appli-
cation at the architectural level.

The AIX 5.1 operating system provides a library with an
application programming interface to the hardware counters
as an operating system kernel extension (pmapi).1 The API,
shown as part of the operating system layer in Figure 1,
provides a set of system calls to initialize, start, stop, and
read the hardware counters. The initialization function en-
ables the programmer to specify a list of predefined events
to count. The number and list of events depends on the ar-
chitecture’s implementation, and vary substantially between
different PowerPC implementations (e.g. PowerPC 604e,
POWER3, and POWER4). The API provides an interface
to count the events for a single kernel thread or for a group of
threads. The library automatically handles hardware counter
overflows and kernel thread context switches.

A programmer can count the number of times a hardware
event occurs in a code segment by manually instrumenting a
program with the appropriate API calls. Prior to the code seg-
ment, the instrumentation calls the API routines to initialize
the library to count certain events and to commence counting.
After the code segment, the instrumentation calls the API rou-
tines to stop counting, read the hardware counter events, and
optionally print the values. The HPM toolkit provides a com-
mand line facility to measure the complete execution of an
application [15].

Some processors provide more sophisticated facilities to
access HPM data. These facilities include thresholding and
sampling mechanisms. The thresholding mechanism allows
the programmer to specify a threshold value and an event.
Only if the event exceeds the threshold value is the hardware
counter incremented. The sampling mechanism allows the
programmer to specify a value,n, and an event. When the
event occurs for thenth time, the hardware exposes the exe-
cuting instruction and operand address to the software. The
POWER4 architecture provides thresholding and sampling
capabilities, but the AIX 5.1 kernel extension library (pmapi)
does not support them.

1The package is also available for earlier versions of AIX at IBM’s Al-
phaWorks sitewww.alphaworks.ibm.com/tech/pmapi .

3 VM Extensions

This section describes extensions to Jikes RVM that enable
the collection of trace files containing thread-specific, tem-
porally fine-grained HPM data in an SMP environment. The
section begins by enumerating the design goals for the infras-
tructure. It then describes the trace record format and high-
lights some of the key ideas of the implementation. Finally, it
considers issues that may arise when attempting to implement
similar functionality in other virtual machines.

3.1 Design Goals

There are four primary goals for the HPM tracing infrastruc-
ture.

Thread-specific data The infrastructure must be able to dis-
criminate between the various Java threads that make up
the application. Many large Java applications are multi-
threaded, with different threads being assigned different
portions of the overall computation.

Fine-grained temporal information The performance
characteristics of a thread may vary over time. The
infrastructure must enable the identification of such
changes.

SMP Support The infrastructure must work on SMPs. In
an SMP environment, multiple threads will be executing
concurrently on different physical processors, and the
same Java thread may execute on different processors
over time. There will be a stream of HPM data associ-
ated with each virtual processor and it must be possible
to combine these separate streams into a single stream
that accurately reflects the program’s execution.

Low overhead Low overhead is desirable both to minimize
the perturbations in the application introduced by gath-
ering the data and to enable it to be used to gather traces
in production environments or for long-running applica-
tions.

3.2 Trace Files

When the infrastructure is enabled, it generates a trace file
for each Jikes RVM virtual processor, and one meta file. This
section describes the structure of the trace and meta files, and
discusses how the data gathered enables the system to meet
the design goals enumerated in Section 3.1.

The core of the trace file is a series of trace records. Each
trace record represents a measurement period in which ex-
actly one Java thread was executing on the given virtual pro-
cessor. The HPM counters are read at the beginning and end
of the measurement period and the change in the counter val-
ues is reported in the trace record. A trace record contains the
following data:

Virtual Processor ID This field contains the unique ID of
the virtual processor that was executing during the mea-
surement period. Although this information can be in-
ferred (each trace file contains trace records from ex-
actly one virtual processor), we chose to encode this in
the trace record to simplify merging multiple trace files
into a single file that represents an SMP execution trace.

Thread ID This field contains the unique ID of the thread
that was executing during the measurement period.

Thread Yield Status This boolean field captures if the
thread yielded before its scheduling quantum expired. It
is implemented by negating the thread ID.

Top Method ID This field contains the unique ID of the top
method on the runtime stack at the end of the measure-
ment period, excluding the scheduler method taking the
sample. Because the complete stack is available, this
field could be extended to capture more methods as was
done to guide profile-directed inlining [18].

Real Time This field contains the value of the PowerPC time
base register at the beginning of the measurement pe-
riod represented by this trace record. The time base reg-
ister contains a 64-bit unsigned quantity that is incre-
mented periodically (at an implementation-defined inter-
val) [22].

Real Time Duration This field contains the duration of the
measurement period as measured by the difference in the
time base register between the start and end of the mea-
surement period.

Hardware Counter Values These fields contain the change
in each hardware counter value during the measurement
period. The number of hardware counters varies among
different implementations of the PowerPC architecture.
In most anticipated uses, one of the counters will be
counting cycles executed, but this is not required by the
infrastructure.

As each trace record contains hardware counter values for a
single Java thread on a single virtual processor, we are able to
gather thread-specific HPM data. The key element for SMP
support is the inclusion in the trace record of the real time val-
ues read from the PowerPC time base register. The primary
use of the real time value is to merge together multiple trace
files by sorting the trace records in the combined trace by the
real time values to create a single trace that accurately mod-
els concurrent events on multiple processors. A secondary
use of this data is to detect that the OS has scheduled other
Pthreads on the processor during the measurement interval.
Large discrepancies between the real time delta and the ex-
ecuted cycles as reported by the hardware counter indicate
that some OS scheduling activity has occurred and that the
Pthread shared the processor during the measurement period.

Recall that the OS extension already distinguishes counters
for each OS kernel thread.

In addition to trace records containing hardware counter
values, a trace file may also contain marker records. We pro-
vide a mechanism, via calls to the VM, for a Java thread
to specify program points that when executed will place a
marker record in the trace file. These marker trace records,
which can contain an arbitrary string, allow the programmer
to focus on particular portions of an execution’s trace. Be-
cause this mechanism is available at the Java level, it can be
used to filter both application and VM activities, such as the
various stages of garbage collection.

A meta file is generated in conjunction with a benchmark’s
trace files. The meta file specifies the number of HPM counter
values in each trace record and provides the following map-
pings: from counter to event name, from thread ID to thread
name, and from method ID to method signature. The number
of counters and the mappings provide a mechanism to inter-
pret a trace record, reducing a trace record’s size by elimi-
nating the need to name trace record items in each individual
trace record.

3.3 Implementation Details

To enable Jikes RVM to access the C pmapi API we defined a
Java class with a set of native methods that mirrors the func-
tionality of the pmapi interface, represented by the dashed
box of the JVM in Figure 1. In addition to enabling our VM
extensions in Jikes RVM to access these functions, the inter-
face class can also be used to manually instrument arbitrary
Java applications to gather aggregate HPM data. We are us-
ing this facility to compare the performance characteristics of
Java applications when run on Jikes RVM and on other JVMs.

The main extension point in Jikes RVM was to add code
in the thread scheduler’s context switching sequence to read
the hardware counters and real time clock on every context
switch in the VM. This information is accumulated into sum-
maries for each virtual processor and Java thread, and writ-
ten into a per virtual processor trace record buffer. Each vir-
tual processor has two dedicated 4K trace record buffers and
a dedicated Java thread, called atrace writer thread, whose
function is to transfer the contents of a full buffer to a file.
Trace records for a virtual processor are written into an active
buffer. When the buffer is full, the virtual processor signals
the trace write thread and starts writing to the other buffer.

By alternating between two buffers, we continuously
gather trace records with low overhead. By having a dedi-
cated Java thread drain a full buffer, and thus, not suspend
the current thread to perform this task, we avoid directly per-
turbing the behavior of the other threads in the system. This
implementation also enables easy measurement of the over-
head of writing the trace file because HPM data is gathered
for all Java threads, including the threads that are writing the
trace files. In our experiments 1.7% of all cycles are spent ex-
ecuting the trace writer threads. The overhead of reading the
hardware counters and real time clock on every thread switch

and storing the trace information into the buffer is in the mea-
surement noise. Thus, the total overhead of the infrastructure
is less than 2%.

Minor changes were also made in the boot sequence of
the virtual machine, and in the code that creates virtual
processors and Java threads to appropriately initialize data
structures. The VM extensions have been available in Jikes
RVM [19] since the 2.2.2 release (June 2003).

The disk space required to store trace records is a func-
tion of the trace record size, the frequency of thread switches,
and the number of virtual processors. For example, running
one warehouse in the SPECjbb2000 benchmark on one vir-
tual processor, we found that 12 Kbytes per second were writ-
ten with a 10 millisecond scheduling quantum.

3.4 Discussion

Jikes RVM’sM -to-N threading required an extension of the
virtual machine to gather Java thread specific HPM data. In
JVMs that directly map Java threads to Pthreads, it should be
possible to gatheraggregateJava thread specific HPM data
using the pmapi library by making relatively simple exten-
sions to read HPM counters when threads are created and
terminated. So, in this respect the Jikes RVM implemen-
tation was more complex than it might have been in other
JVMs. However,M -to-N threading made the gathering of
fine-grained temporal HPM data fairly straightforward. A
relatively simple extension to the context-switching sequence
to read the HPM counters on every thread switch was suffi-
cient to collect the desired data. Gathering this kind of data
on virtual machines that do not employM -to-N threading
will probably be significantly more difficult because apply-
ing a similar design would require modifications to either the
Pthread or OS thread libraries.

4 Visualization Tool

This section describes our visualization tool, called thePer-
formance Explorer , which supports performance anal-
ysis through the interactive visualization of trace records that
are generated by the VM extensions described in Section 3.
Figure 2 presents an overview of thePerformance Ex-
plorer when run with a variant of SPECjbb2000 using one
warehouse on one virtual processor. The figure comprises
three parts (a, b, andc), which are further described below.

The Performance Explorer is based on two key
concepts:trace record setsandmetrics. A trace record set
is a set of trace records. Given the trace files of an applica-
tion’s execution, thePerformance Explorer provides
an initial trace record set containing all trace records of all
threads on all virtual processors. It also provides filters to
create subsets of a trace record set (e.g., all trace records
of the MainThread, all trace records longer than 5 ms, all
trace records with more than 1000 L1 D-cache misses, or all
trace records ending in a Java method matching the regular

expression “.*lock.* ”). Part a of Figure 2 illustrates the
user interface for configuring these filters. Furthermore, the
Performance Explorer provides set operations (union,
intersection, difference) on trace record sets.

A metricextracts or computes a value from a trace record.
ThePerformance Explorer provides a metric for each
hardware counter gathered in the trace files, and a metric
for the trace record duration. The user can define new met-
rics using arithmetic operations on existing metrics. For ex-
ample, instructions per cycle (IPC) can be computed using
a computed metric that divides the instructions completed
(INST CMPL) event value by the cycles (CYC) event value.
Part b in Figure 2 shows a graph for just one metric. The
horizontal axis is wall-clock time, and the vertical axis is de-
fined by the metric, which in this case is IPC. The vertical
line that is a quarter of the way in from the left side of the
graph represents a marker trace record generated by manual
instrumentation of the program. This specific marker shows
when the warehouse application thread starts executing. To
the right of the marker, the applications enters a steady state
where the warehouse thread is created and executed. To the
left of the marker represents the program’s start up where its
main thread dominates execution. Each line segment in the
graph (in this zoomed-out view of the graph most line seg-
ments appear as points) represents a trace record. The length
of the line segment represents its wall clock duration. The
color of the line segment (different shades of gray in this pa-
per) indicates the corresponding Java thread. The user can
zoom in and out and scroll the graph.

Partc of Figure 2 displays a table of the trace records vi-
sualized in the graph, one trace record per line. This table
presents all the attributes of a trace record, including the val-
ues of all metrics plotted in the graph. Selecting a range of
trace records in the graph selects the same records in the ta-
ble, and vice versa. This allows the user to select anomalous
patterns in the graph, for example the drop in IPC before each
garbage collection, and immediately see all the attributes (like
method names) of the corresponding trace records in the trace
record table. The user can get simple descriptive statistics
(sum, minimum, maximum, average, standard deviation, and
mean delta) over the selected trace records for all metrics. Fi-
nally, a selection of trace records can be named and saved as
a new trace record set.

In addition to providing time graphs and trace record ta-
bles, thePerformance Explorer also provides several
other ways to visualize the trace data. ThePerformance
Explorer provides thread timelines, which are tables
where each column represents a thread, each row represents
an interval in time, and the cells are colored based on the
processor that is executing the thread. ThePerformance
Explorer provides processor timelines, where each col-
umn represents a processor, and the cells are colored based on
the thread that executes on the processor. Cells in these time-
lines visualize a given metric (like IPC), and they are adorned
with glyphs to show preemption or yielding of a thread at the

Figure 2: Overview of thePerformance Explorer .

end of a time slice. These timelines are helpful in analyzing
scheduling effects. ThePerformance Explorer pro-
vides scatter plots, where the X and Y axes can be any given
metric, and all trace records of a trace record set are repre-
sented as points. Lastly, thePerformance Explorer
calculates the correlations between any two metrics over a
trace record set.

Due to the extensive number of HPM events that can be
counted on POWER4 processors, and the limitation of a given
event being available only in a limited number of hardware
counters, thePerformance Explorer provides func-
tionality for exploring the available events and event groups.

Because of space considerations, subsequent figures only
contain information from thePerformance Explorer
that is pertinent to the discussion at hand.

5 Experiments

This section demonstrates how we used thePerformance
Explorer to understand the performance behavior of a vari-
ant of the SPECjbb2000 benchmark on a PowerPC POWER4
machine.

Caches Size Line size Kind
L1 Instr. 32KB 128B direct mapped
L1 Data 64KB 128B 2-way set assoc.
L2 Unified 1.5MB 128B 8-way set assoc.
L3 local 32MB 512B 8-way set assoc.
L3 remote 32MB 512B 8-way set assoc.

Table 1: POWER4 three levels of cache hierarchy.

5.1 POWER4

The POWER4 [8] is a 64-bit microprocessor that contains two
processors on each chip. Four chips can be arranged on a
module to form an 8-way machine, and four modules can be
combined to form a 32-way machine. The POWER4 contains
three cache levels as described in Table 1. There is one L1
data and one L1 instruction cache for each core on a chip.
The L1 caches arestore through(write through); that is, a
write to the L1 is stored through to L2. Two processors on a
chip share an L2 cache. The L2 cache is inclusive of the two
L1 data caches, but not inclusive of the two L1 instruction
caches; that is, any data in the L1 data cache also resides in

the L2 cache. However, data may reside in the L1 instruction
cache that does not reside in the L2 cache. The L2 cache is
store in (write back); that is, a write to L2 is not written to
main memory (or L3). Up to four L3 caches can be arranged
on a module. The L3 cache acts as a victim cache, storing
cache lines that are evicted from L2; therefore, the L3 cache
is not inclusive of the L2 cache.

5.2 Experimental Methodology

We used a 4-way POWER4 machine with two chips in which
each chip is placed on a separate module. We use a vari-
ant of the SPECjbb2000 [29] benchmark for our experiments.
SPECjbb2000 simulates a wholesale company whose execu-
tion consists of two stages. During startup, the main thread
sets up and starts a number of warehouse threads. Dur-
ing steady state, the warehouse threads execute transactions
against a database (represented as in-memory binary trees).
The variant of SPECjbb2000 that we use is called pseudojbb:
pseudojbb runs for a fixed number of transactions (120,000)
instead of a fixed amount of time. We run pseudojbb with one
warehouse thread on a single virtual processor. In our config-
uration, the pseudojbb run takes 25 seconds on a POWER4
workstation. We use an adaptive Jikes RVM configuration
that has the adaptive optimization system (AOS) with a semis-
pace garbage collector. The source code for Jikes RVM is
from the September 26, 2003 head of the public CVS reposi-
tory.

When run on a single virtual processor, Jikes RVM cre-
ates eight Java threads during execution in addition to the
two Java threads created by pseudojbb: agarbage collection
thread that executes only during garbage collection; afinal-
izer thread that finalizes dead objects and is executed infre-
quently; adebuggerthread that never executes; and anidle
thread that helps load balance Java threads when a virtual
processor is idle, but because only a single virtual proces-
sor is used the idle thread never executes. As mentioned in
Section 3 the VM also creates atrace writer thread to trans-
fer trace records from a buffer to a trace file. The last three
threads are related to the adaptive optimization system [6].
The compilationthread performs optimized compilations of
methods selected by thecontroller thread, which processes
online profile data recorded by theorganizerthread.

5.3 Exploration

This section demonstrates two approaches to using the
Performance Explorer to investigate performance
phenomena. The first approach uses thePerformance
Explorer to look for general trends over time. We discov-
ered the following two unexpected instruction per cycle (IPC)
trends:

• Significant IPC improvement over time for an adaptive
Jikes RVM configuration.

• Significant IPC degradation before GC.

Both trends were unknown before using thePerformance
Explorer . These trends over time would be difficult, if not
impossible, to detect without a visualization tool.

The second approach uses thePerformance
Explorer to explore memory latency issues with re-
spect to the POWER4 microarchitecture. Specifically,
we used thePerformance Explorer to explore the
following questions:

• What is the impact on IPC and memory performance of
context switches between different Java threads?2

• How do latency issues manifest in the POWER4 mem-
ory hierarchy?

Although the answers to these two questions might have
been determined by performing a computation over the trace
records directly, thePerformance Explorer provides a
unified approach to explore these questions.

5.4 General Performance Trends

The top graph in Figure 3 presents a graph of the IPC of a
warehouse thread over time. For clarity of presentation, only
the IPC trace records of the warehouse thread are displayed;
all other Java threads are not shown. The noticeable gaps in
the warehouse trace records are stop-the-world garbage col-
lections, which disable Java thread scheduling when it runs.

Two general performance anomalies are noticeable in this
graph. First, IPC improves over time. The IPC in the left
corner is around 0.41, while the IPC in the right corner is
above 0.49, a 20% increase. Second, before each of the GCs
there is a significant IPC degradation or drop. We used the
Performance Explorer to help us explore both of these
phenomena.

5.4.1 Anomaly 1

To understand the IPC improvement over time, we used the
Performance Explorer to chart each HPM event to de-
termine the event or events that have a high correlation with
the IPC. We found two such HPM events. The bottom graph
in Figure 3 presents a warehouse thread’s flushes per instruc-
tions completed over time.

A flush event may occur in a out-of-order processor for
multiple reasons. A common reason is an out-of-order mem-
ory operation that executes and violates a data dependence.
For example, the load of a memory location will be flushed
if the load is speculatively executed before the execution of
the store instruction to that memory location. When an in-
struction is flushed, all the instructions that are dispatched
and occur in program order before the flushed instruction are
also flushed. Hence, a flush event is expensive.

2In the past, a context switch, when control changes from one process
to another, had been identified as having an impact on performance due to
destroyed cache locality [25].

Figure 3: A graph over time of the warehouse thread’s instruction per cycle and flushes per instructions completed.

AOS
Metric JIT-base start (∆%) end (∆%) JIT-opt0 (∆%)

IPC 0.348 0.415 (+19.3%) 0.489 (+42.5%) 0.500 (+43.7%)
LSU FLUSH/INST CMPL 15.2% 7.0% (-54.2%) 0.3% (-97.4%) 0.1% (-99.3%)
INST CMPL 4.18M 4.05M (+16.0%) 5.84M (+42.6%) 5.96M (+42.6%)

Table 2: Metrics across JIT and AOS configurations.

The POWER4 has multiple HPM events that count flush
events. We have added together the values of the two dom-
inant HPM flush events so that only one graph is displayed.
The bottom graphs in Figure 3 illustrate that the flush rate
changes dramatically over time. In the left corner, a flush
event occurs for as many as 9.6% of the completed instruc-
tions while in the right corner a flush event occurs for as little
as 0.4% of the completed instructions.

The Jikes RVM’s adaptive optimization system (AOS) [6]
compiles a method baseline (non-optimizing) compiler when
it is first invoked. At thread switch time, the system records
the method ID of the top method on the call stack and uses
the number of times a method is sampled to predict how long
a method will execute in the future. Using a cost/benefit
model, the system determines when compiling a method at
a particular optimization level has a benefit that outweighs
the cost of the compilation for the expected future execution
of the method. The system samples method IDs continuously
throughout an application’s execution, and optimizes meth-
ods whenever the model deems the optimizations are benefi-
cial.

Table 2 provides insight into why the warehouse thread’s
performance improves over time. The first column specifies
the two metrics that are graphed in Figure 3 and an additional
metric of instructions completed (INSTCMPL). The table
has four columns that contain metrics for the start and end
of a run using the adaptive optimization system and two sep-
arate runs that use a non-adaptive strategy, which we call JIT
configurations. In a JIT configuration, a method is compiled
only once when it is first invoked. A JIT-base configuration
uses the baseline compiler. A JIT-opt0 configuration uses the
optimizing compiler at optimization level 0.3 On a POWER4,

3For the execution of pseudojbb that uses the adaptive optimization sys-
tem, 612 methods are baseline compiled, and of those, 251 methods are re-

the average execution time for SPECjbb2000 when one ware-
house is run on 120,000 transactions is 27 seconds with JIT-
opt0, and 175 seconds with JIT-base.

For this table, the metrics are computed as the average
across warehouse trace records. The AOS start and end met-
rics were computed by taking the average of the first 14 and
the last 14 warehouse trace records, respectively. The metrics
for each of the JIT configurations is computed as the average
over all of its warehouse trace records.

The first observation is that there is a large difference be-
tween the execution behavior of baseline compiled code (JIT-
base) and the optimization level 0 compiled code (JIT-opt0).
In particular, there is a 43.7% increase in IPC, a 99.3% de-
crease in flush events, and a 42.6% increase in instructions
completed when going from baseline to optimization level 0.
To understand this difference, we need to know how base-
line compiled code differs from optimized code. The base-
line compiler directly translates byte codes into machine code
without any optimizations. In particular, no register alloca-
tion is performed and the Java expression stack is explicitly
maintained with loads and stores accessing memory. Typi-
cally, after a value is pushed onto the stack it is popped off im-
mediately and used. With baseline-compiled code, the num-
ber of flush events is high, 15.2% of the instructions com-
pleted. This is because the scheduling of out-of-order mem-
ory operations does not take into account the dependencies
between memory locations: that is, the load instruction that
models a pop to stack locationL may be speculatively ex-
ecuted before the store instruction that models the push to
stack locationL. In optimized code, the number of flush

compiled: 125 methods are compiled at optimization level 0, 109 at level 1,
and 17 at level 2. We show the metrics for a JIT-opt0 because the metrics at
JIT-opt1 are similar, and although the metrics for JIT-opt2 degrade slightly,
few methods are optimized at optimization level 2.

Metric Total Drop ∆
INST CMPL/CYC (IPC) 0.4924 0.4610 -6.4%
HV CYC/CYC 0.0239 0.1249 +423.0%
EE OFF/CYC 0.0197 0.0785 +300.0%
GRPDISP BLK SB CYC/CYC 0.0060 0.0258 +333.0%
LSU SRQSYNC CYC/CYC 0.0061 0.0170 +178.0%
STCX FAIL/STCX PASS+STCXFAIL 0.0009 0.0040 +362.0%
LSU LRQ FULL CYC/CYC 0.0008 0.0027 +250.0%

Table 3: Metrics that impact performance degradation before GC.

events is almost zero because values are loaded from memory
into registers without explicitly modeling the Java expression
stack.

Comparing the JIT configuration metrics, the impact of
flush events on the number of completed instructions in a full
10 millisecond time slice is enormous:4 42.6% more instruc-
tions complete, when flushes are almost completely elimi-
nated. In the AOS configuration, the execution behavior of
the last fourteen warehouse trace records is very similar to
the behavior of JIT-opt0. This is what is to be expected as the
adaptive optimization system has had time to optimize the
code that executes frequently. Running under the adaptive
optimization system, when the warehouse thread starts exe-
cuting all the warehouse methods are initially baseline com-
piled; however, because start up and steady state share code,
some code that executes at the start of steady state is already
optimized. As illustrated in Table 2, the AOS start has an
expected behavior that falls between JIT-base and JIT-opt0
behavior.

5.4.2 Anomaly 2

To identify which HPM events correlate with the drop in IPC
before each garbage collection, we used thePerformance
Explorer to select for each group of HPM events a repre-
sentative set of warehouse trace records between two garbage
collections and to compute the set’s average for all HPM
events (Total).5 From this representative set, we used the
Performance Explorer to pick the subset of trace
records that represented the IPC drop (Drop) and computed
its average for all HPM events. After these two computations,
we identified the HPM events whose average values differed
the most between Total and Drop. Table 3 presents our re-
sults. The first column identifies the HPM events. The HPM
event values are normalized by dividing by cycles, except for

4In a JIT configuration none of the AOS threads execute. In particular,
there is no compilation thread; the cost of compiling a method is attributed
to the application thread. Nevertheless, in a JIT configuration, the warehouse
thread is interrupted only by the garbage collector and the infrequently ex-
ecuting finalizer thread. So once all the warehouse methods are compiled,
every warehouse time slice runs for the full 10 millisecond quantum.

5Because the POWER4 has over two hundred events, but only 8 coun-
ters, this process had to be performed manually on many different trace files.
In the future, this process could be incorporated into thePerformance
Explorer and automated.

STCX FAIL, which is normalized by the number of STCX
attempts. The second column presents the values for all trace
records in the set (Total), the third column presents the values
for the subset of trace records after IPC drops (Drop), and the
final column presents how Drop’s average changes as a per-
centage of Total’s average. As can be seen, the IPC degraded
by 6.4%, while there is a substantial increase (178–423%) in
the percentage of the identified HPM events.

The set of events in Table 3 is eclectic. The HVCYC (the
processor is executing in hypervisor mode) and EEOFF (the
MSR EE bit is off) events specify the cycles spent in the ker-
nel. The GRPDISP BLK SB CYC (dispatch is blocked by
scoreboard), LSUSRQSYNC CYC (sync is in store request
queue), and STCXFAIL (a stcx instruction fails) events all
have to do with synchronization. The
LSU LRQ FULL CYC event indicates that the load request
queue is full and stalls dispatch.

Both the HVCYC and EEOFF events indicated increased
kernel activity, and the difference in HVCYC/CYC percent-
ages accounts for just over 10% of all the cycles. The trace
records for pseudojbb reflect both user and kernel mode ex-
ecution; that is, the HPM counters continued counting when
control enters the kernel. To determine if there was some
underlying pathological Jikes RVM behavior that was caus-
ing increased kernel activity, we used the unixtruss com-
mand to trace kernel calls. Other thanyield , nsleep ,
thread waitact , and calls to the kernel HPM routines,
there were no unusual kernel calls or increase in call activity
that would explain the performance drop.

There is some indication that the IPC drop may be due to
effective to real address translation (ERAT). The 128 entry
IERAT and 128 entry DERAT are a cache for the 1024 entry
TLB. We are investigating this hypothesis more thoroughly.

This anomaly illustrates the difficulty with determining
performance anomalies with HPM information only. Deep
microarchitectural, OS, and JVM knowledge is required to
augment the HPM information.

5.5 Memory Wall Issues

We now use thePerformance Explorer to explore how
the scheduling of Java threads and garbage collection interact
with the memory hierarchy. Our experiments use a semispace

garbage collector that divides the heap into two semispaces,
from and to. The program allocates all objects in thefrom
semispace. When garbage collector is triggered the collector
copies all the live objects from thefrom space to theto space
and switches the role of thefromandto spaces. At the end of
GC, all the live data is contiguous at the start of the newly-
labeledfrom semispace.

Since Jikes RVM allocates code in the heap [3], the
garbage collector moves around and compacts not just the
data, but also the code that is not in the boot image (i.e., the
compiler, standard libraries, etc.). The code is movedthrough
the data cache. Thus after GC, references to instructions will
miss in the instruction cache. The garbage collector does not
move instructions in the boot image and thus after GC, refer-
ences to these instructions may or may not miss (depending
on how much of the cache is flushed by the garbage collec-
tor).

For the experiments reported in this section, we executed
pseudojbb with the semispace garbage collector using the de-
fault adaptive heap size policy. The average amount of live
data at the end of GC was around 25–30 MB. Before GC, the
total heap space (excluding theto space) was about 100 MB.

5.5.1 Interaction of Threads with Memory System

We used thePerformance Explorer to understand the
impact of references and miss rates to the different mem-
ory hierarchy levels for both data and instructions of each
Java thread. In particular, we compute the miss rate to
L1 data cache by dividing the number of load misses from
L1 (LD MISS L1) by the number of load references to L1
(LD REF L1). Unfortunately, the POWER4 HPM support
does not provide miss and reference events to the other lev-
els in the memory hierarchy, but does provides access counts:
the number of times data is accessed from a particular cache.
Therefore, we compute the number of references to a mem-
ory hierarchy level as the sum of the number of accesses to
this level and to all lower levels. We compute the number of
misses at a higher level in the memory hierarchy as the sum-
mation of the references at lower levels. The miss rate for a
particular level is computed as the misses divided by the ref-
erences to that level. For example, POWER4 HPM provides
DATA FROM X events to specify the number of times data
is accessed from the X level in the memory hierarchy. Thus,
the L3 miss rate is (DATAFROM MM) / (DATA FROM L3
+ DATA FROM MM).

Table 4 presents the references and misses metrics for the
L1 instruction and data caches. TheThread column iden-
tifies the Java threads. TheCycles column identifies the
percentage of total cycles spent executing this thread. The
Records column reports the number of trace records cap-
tured for this thread. TheIPC column reports instructions
per cycle. TheInstructions column reports the average
number of instructions executed for each time quantum the
Java thread is executed. The next two columns labeledL1
Instructions report the references and misses to the L1

0

1

2

3

4

5

%
 (

no
rm

al
iz

ed
 t

o
L

1)

Warehouse GC
�

Compilation Controller TraceWriter� Organizer

0.
00

2%

0.
03

5%
1.

48
0%

 0
.0

01
%

 0
.0

03
%

 0
.0

33
%

 0
.0

48
%

 0
.0

98
%

 0
.6

36
%

 0
.2

73
%

 0
.4

61
%

 1
.8

45
% 2

.2
19

% 2
.6

42
%

 4
.9

30
%

 0
.4

84
% 0

.9
21

%
 2

.9
91

%

MM
L3
L2

Figure 4: Instruction references to levels in the memory hier-
archy normalized to all instruction references.

instruction cache. The last two columns report similar values
for the L1 data cache. The reference and miss rate computed
metrics for the other levels of the memory hierarchy can be
computed from Table 4 and the subsequent Figures 4 – 7

Figures 4 and 5 illustrate the references to L2, L3, and
main memory as a percentage of all references for both in-
structions and data. The horizontal axis is the Java threads
and the vertical axis is the percentage of all references for a
particular thread. For each thread, there are three bars, one
for each memory hierarchy level:L2 , L3 , andMM. Figure 4
shows that the three Java threads (warehouse, GC, and com-
pilation), which consume 79% of all cycles, have a 98% hit
rate for L1 instruction cache, indicating excellent instruction
locality. The daemon threads, which execute infrequently and
for a short interval of time, have worse L1 instruction local-
ity. This is expected, because of their infrequent execution,
little or none of their instructions will be in the cache, and
because of there short execution duration, the cache misses
have a short interval over which to be amortized. Of the three
daemon Java threads, TraceWriter stands out as having the
worst instruction locality with almost 10% of its instructions
not found in the L1 cache: half of the 10% is found in the
L2 instruction cache. TraceWriter is the least frequently exe-
cuted daemon thread.

For data references, illustrated in Figure 5, the story is bet-
ter and remarkable consistent across all threads. At most 5%
of data is not found in the L1 cache for any of the Java threads.
Both the warehouse and GC threads have the best locality
with less than 3% of the data not found in the L1 cache. This
implies that the working sets of the Java threads fit into the
64KB data cache. As is expected, the lower the memory level,
the fewer the references: L2 has fewer than 3.4% of all refer-
ences, and main memory has less than 0.2% of all references

L1 Instructions L1 Data
Thread Cycles Records IPC Instructions References Misses References Misses

Warehouse 59.12% 1995 0.481 11,261,031,705 6,080,171,921 89,966,131 5,885,067,463 461,297,214
GC 13.96% 11 0.524 2,885,482,384 1,447,776,154 482,694 1,113,092,487 281,135,697
Compilation 6.46% 271 0.565 1,531,568,783 905,536,702 5,757,690 769,831,082 89,280,559
Controller 0.11% 141 0.212 11,867,348 8,730,297 161,096 8,496,326 835,170
TraceWriter 0.05% 82 0.097 2,411,860 1,395,686 68,802 1,599,610 447,691
Organizer 0.03% 141 0.166 2,037,304 1,322,770 39,568 1,307,913 145,696

Table 4: L1 data and instruction cache references and misses for different Java threads.

0

1

2

3

4

5

%
 (

no
rm

al
iz

ed
 t

o
L

1)

Warehouse GC
�

Compilation Controller TraceWriter� Organizer

0.
10

2%

0.
30

3%
2.

46
4%

0.
12

5%
0.

16
2%

2.
02

2%

0.
03

9%
0.

11
4%

3.
06

4%

0.
23

8%
0.

41
1%

2.
03

1%

0.
68

6%
1.

19
9%

3.
13

2%

0.
36

6% 0.
64

6%
3.

35
2%

MM
L3
L2

Figure 5: Data references to levels in the memory hierarchy
normalized to all data references.

across all the Java threads.

Figures 6 and 7 illustrate the miss rates for the different lev-
els of the memory hierarchy for both instructions and data.
The figures illustrate that both the instruction and data L1
cache miss rates are small, less than 5% for instructions and
less than 3.2% for data for all the Java threads. Furthermore,
the figures illustrate that the L3 is of little help for all, but
warehouse instructions: the L3 miss rate ranges from 33.57%
to 84.01%. In general, the L2 miss rate is better for data than
instructions. However, because the references to main mem-
ory and L3 are low, the high miss rates for L2 and L3 are not
of a big concern.

Figure 6 shows that GC incurs a 0.033% instruction miss
rate in L1. There are two reasons for this: (i) GC runs in un-
interruptible mode where other Java threads cannot preempt
its execution and evict its working set from the cache; and (ii)
GC spends most of its time in a small inner loop which can
easily fit in the cache. The instruction miss rates for the GC
thread in L2 and L3 are not really relevant to performance
since GC makes so few instruction references to L2 and L3.

0

20

40

60

80

100

%
 (

no
rm

al
iz

ed
 t

o
L

1)

Warehouse GC
�

Compilation Controller TraceWriter� Organizer

5.
67

%

2.
35

%

1.
48

%

40
.6

0%

 9
.2

54
%

 0

.0
33

%

 4
8.

78
%

 1
5.

44
%

 0

.6
36

%

59
.1

8%
 2

4.
98

%
 1

.8
45

%

84
.0

1%

53
.5

8%

 4
.9

3%

 5
2.

58
%

 3

0.
78

%

 2
.9

91
%

L3

L2

L1

Figure 6: Instruction miss rates to levels in the memory hier-
archy normalized to L1.

0

20

40

60

80

100

%
 (

no
rm

al
iz

ed
 t

o
L

1)

Warehouse GC
�

Compilation Controller TraceWriter� Organizer

33
.5

7%

12
.3

0%

2.
46

4%

77
.4

5%

 7
.9

92
%

 2

.0
22

%

 3
4.

56
%

 3
.7

07
%

 3

.0
64

%

57
.9

5%
 2

0.
23

%
 2

.0
31

%

56
.6

6%

18
.2

6%

2.

35
2%

 5
7.

23
4%

 3

8.
27

%

 3
.1

32
%

L3

L2

L1

Figure 7: Data miss rates to levels in the memory hierarchy.

0

20

40

60

80

100
%

 (
no

rm
al

iz
ed

 t
o

L
1)

all 50
�

10
�

5� 1

 5
.6

7%

 2
.3

5%

 1
.4

8%

 9
.7

4%

 2
.1

4%

 1
.3

8%

28
.1

1%

 2
.5

3%

 1
.3

7%

48
.6

0%

 3
.2

5%

 1
.4

2%

98
.2

6%

42
.7

9%

 8
.1

0%

L3

L2

L1

Figure 8: Instruction miss rates after a GC.

5.5.2 Effect of GC on Cache Performance

Because the garbage collector moves data and code, it can
significantly affect the memory system behavior of the code
that subsequently executes. To investigate this effect, we
usedPerformance Explorer to extract miss rates for
the first (1), the first five (5), the first ten (10), and the first
fifty (50) warehouse trace records immediately after a GC.
Figures 8 and 9 present this data for instructions and data, re-
spectively. As a reference, theAll bars present the overall
cache miss rate of the warehouse thread.

From Figures 8 and 9 we see that both the instructions
and data suffer increased cache misses immediately after a
garbage collection. The misses in the L1 and L2 caches sta-
bilize in less than 5 trace records. The much larger L3 cache
takes even longer than 50 trace records to stabilize. The per-
centage of all references that are made to L2 is less than
0.30% for data and less than 0.05% for instructions for all
but the first trace record after a GC. The percentage of all ref-
erences that are to L3 is less than L2. The increased miss
rates after a GC are also reflected in the IPC: the IPC in the
first and first five trace records immediately following a GC
are 0.069 and 0.357. In contrast the stable state IPC is 0.429.

These results clearly indicate that GC significantly de-
grades the memory performance of the application and it can
take a significant amount of time, as indicated by the num-
ber of trace records, after a GC before the working set of the
application is in the caches again. In future work we will in-
vestigate how other GC algorithms behave in this regard.

5.6 Discussion

We found that having a tool to manipulate the HPM data is
indispensable. With over sixty thousand events in one 30-

0

20

40

60

80

100

%
 (

no
rm

al
iz

ed
 t

o
L

1)

all 50
�

10
�

5� 1

33
.5

7%

12
.3

0%

2.
43

%

35
.4

7%

11
.9

3%

 2
.3

0%

 4
8.

70
%

 1
1.

78
%

 2
.3

5%

58
.2

0%

12
.0

7%

 2
.3

9%

83
.5

2%

28
.8

0%

 6
.8

2%

L3

L2

L1

Figure 9: Data miss rates after a GC.

second execution of pseudojbb, some kind of tool is required
to organize the HPM data. Surprisingly we found that, in
many cases, visualization alone was not sufficient to detect
trends. Alternatives, such as selecting subsets of trace records
and computing average metric values over the subset, were
required.

Because the POWER4 has only 8 counters, multiple runs
of pseudojbb were required to collect traces for all the HPM
events. ThePerformance Explorer is currently de-
signed to work on one trace file at a time. Therefore using
thePerformance Explorer to understand trends across
all the HPM events is rather tedious as a new window has
to be opened for each trace. Extending the functionality of
the Performance Explorer to perform more complex
computations and support for better report generation would
be helpful.

The performance degradation before GC demonstrates why
traces for all HPM events are required as it is difficult to al-
ways know a priori what subset of HPM events are needed.

It took us a while to determine the correct computed met-
rics to explore the performance issues related to memory la-
tency. One difficulty was understanding how HPM events can
be combined to compute metrics. In general, the HPM data
are part of the puzzle and getting the complete picture may
require additional information or experiments. We found that
the HPM data can help to determine what additional informa-
tion is required. For example, we used JIT configurations to
understand the IPC improvement over time for the adaptive
configuration of Jikes RVM.

6 Related Work

This section surveys related work on software tools that col-
lect, analyze, and visualize hardware performance counter
data and other performance-related work for Java.

6.1 Accessing Hardware Counters

Several library packages provide access to hardware perfor-
mance counter information, including the HPM toolkit [15],
PAPI [11], PCL [9], and OProfile [26]. These libraries
provide facilities to instrument programs, record hardware
counter data, and analyze the results. We extend the func-
tionality of existing libraries to obtain hardware performance
data in a virtual machine. Specifically, we extend Jikes RVM
to collect thread-specific, temporally fine-grained hardware
counter data in an SMP environment.

The Digital Continuous Profiling Infrastructure provides a
powerful set of tools to analyze and collect hardware perfor-
mance counter data on Alpha processors [5]. The system
includes tools to collect accurate profile data with very low
overhead and to analyze the profile data using many perfor-
mance metrics. The system works on unmodified executables
on multiprocessors and collects time-based hardware counter
samples of program counter values. VTune [32] and Speed-
Shop [35] are similar tools from Intel and SGI, respectively.
Our work differs in that we are interested in correlating the
hardware counter data to high-level program constructs, such
as Java threads, to distinguish the effects from the VM and
user applications, in an SMP environment in a temporal man-
ner.

Ammons et al. [4] correlate hardware performance counter
information to frequently executed program paths. They use
flow- and context-sensitive data-flow analysis techniques to
collect hardware counter data along program paths instead
of just individual statements or procedures. Although this
provides fine-grained information, the overhead of recording
hardware counter data along the paths increases runtime by
an average of 70%. The overhead of collecting and storing
our HPM trace files is less than 2% in our VM.

IBM’s Performance Inspector [30] is a collection of profil-
ing tools. It includes a patch to the Linux kernel providing
a trace facility and hooks to record scheduling, interrupt and
other kernel events. The package contains tools for sampling-
based profiling (any performance counter can be used to trig-
ger sampling), manual instrumentation-based profiling (mea-
suring per-thread time/performance counts), and exception-
based basic block profiling. Our work profiles several per-
formance counters at once, does not require instrumentation
by hand, and is tightly integrated with our VM, resulting in
access to information about the runtime system (like compi-
lation and garbage collection).

6.2 Profiling Java Workloads

The Java Virtual Machine Profiler Interface (JVMPI) defines
a general purpose mechanism to obtain profile data from a
Java VM [31]. JVMPI supports CPU time profiling (using
statistical sampling or code instrumentation) for threads and
methods, heap profiling, and monitor contention profiling.
Our work differs in that we are interested in infrastructure

that measures the architectural level performance of Java ap-
plications.

Java middleware and server applications are an important
class of emerging workloads. Existing research uses simu-
lation and/or hardware performance counters to characterize
these workloads. Cain et al. [13] evaluate the performance of
a Java implementation of the TPC-W benchmark and com-
pare the results to SPECweb99 and SPECjbb2000. The TPC-
W benchmark models an online bookstore, and the Java im-
plementation is a combination of Java Servlets that commu-
nicate with a database system using JDBC. Cain et al. use
hardware counters to measure the performance of the entire
benchmark on an IBM multiprocessor with eight RS64-III
processors. They also use simulation to experiment with new
architectural features. Our infrastructure enables us to dis-
tinguish the performance between the various threads of the
VM and application, on different processors, at regular time
intervals.

Luo and John [21] evaluate SPECjbb2000 and VolanoMark
on a Pentium III processor using the Intel hardware perfor-
mance counters. Seshadri, John, and Mericas [28] use hard-
ware performance counters to characterize the performance
of SPECjbb2000 and VolanoMark running on two PowerPC
architectures. The focus of both studies was to compare Java
server applications to the SPECint2000 benchmarks, which
are written in C. They obtain aggregate counter information
over a significant portion of the benchmarks running a single
processor, whereas we gather hardware performance data on
multiple processors on a per thread basis at regular intervals.

Karlsson et al. [20] characterize the memory performance
of Java server applications using real hardware and a sim-
ulator. They measure the performance of SPECjbb2000
and ECPerf on a 16-processor Sun Enterprise 6000 server.
Karlsson et al. use the hardware counters to measure coarse-
grained events. The results are for the execution of the entire
benchmark, and they do not distinguish between the VM and
the application. Our infrastructure enables us to obtain fine-
grained performance measurements information in real time.

Dufour et al. [16] introduce a set of architecture- and
virtual machine-independent Java bytecode-level metrics for
describing the dynamic characteristics of Java applications.
Their metrics give an objective measure of aspects like ar-
ray or pointer intensiveness, degree of polymorphism, alloca-
tion density, degree of concurrency, and synchronization. Our
work analyzes workload characteristics on the architectural
level, covers both application, library and the virtual machine
behavior, and investigates behavioral patterns over time.

6.3 Statistical Performance Analysis

Recent work uses statistical techniques to analyze perfor-
mance counter data. Eeckhout et al. [17] analyze the hard-
ware performance of Java programs. They use principal
component analysis to reduce the dimensionality of the data
from 34 performance counters to 4 principal components.
Then they use hierarchical clustering to group workloads with

similar behaviors. They gather only aggregate performance
counts, and they divide all performance counter values by the
number of clock cycles. Ahn and Vetter [1] hand-instrument
several code regions in a set of applications. They gather data
from 23 performance counters for three benchmarks on two
different parallel machines with 16 and 68 nodes. Then they
analyze that data using different clustering algorithms and
factor analysis, focusing on parallelism and load balancing.
We visualize behavior over time, require no instrumentation,
and allow the analysis of any kind of derived metric.

6.4 Performance Visualization

Mellor-Crummey et al. [23] present HPCView, a performance
visualization tool together with a toolkit to gather hardware
performance counter traces. They use sampling to attribute
performance events to instructions, and then hierarchically
aggregate the counts, following the loop nesting structure of
the program. Their focus is on attributing performance counts
to source code areas, whereas our focus is attributing them
to processors and threads. They provide only metrics ag-
gregated over the complete runtime. We show the value of
metrics over time, which is important for understanding the
application behavior in a virtual machine with a rich runtime
system.

Miller et al. [24] present Paradyn, a performance mea-
surement infrastructure for parallel and distributed programs.
Paradyn uses dynamic instrumentation to count events or to
time fragments of code. It can add or remove instrumen-
tations on request, reducing the profiling overhead. Met-
rics in Paradyn correspond to everything that can be counted
or timed through instrumentations. The original Paradyn
does not support multithreading, but Xu et al. [34] intro-
duce extensions to Paradyn to support the instrumentation
of multithreaded applications. Our infrastructure contains
full support for gathering hardware performance counters and
is tightly integrated with the Java virtual machine’s thread
scheduler, which allows us to gather accurate performance
measures for the complete system with very low overhead.

Zaki et al. [36] introduce an infrastructure to gather traces
of message-passing programs running on parallel distributed
systems. They describe Jumpshot, a trace visualization tool,
which is capable of displaying traces of programs running on
a large number of processors for a long time. They visualize
different (possibly nested) program states, and communica-
tion activity between processes running on different nodes.
The newer version by Wu et al. [33] is also capable of cor-
rectly tracing multithreaded programs. We focus on tracing a
single process on one SMP computer. Instead of tracing com-
munication activity and user-defined program states of MPI
(Message Passing Interface) programs, we gather and visual-
ize the hardware performance of Java applications on a virtual
machine.

Pablo, introduced by Reed et al. [27], is another perfor-
mance analysis infrastructure focusing on parallel distributed
systems. It supports interactive source code instrumentation,

provides data reduction through adaptively switching to ag-
gregation when tracing becomes too expensive, and intro-
duces the idea of clustering for trace data reduction. DeRose
et al. [14] describe SvPablo (Source View Pablo), loosely
based on the Pablo infrastructure, which supports both, inter-
active and automatic software instrumentation and hardware
performance counters, to gather aggregate performance data.
They visualize this data for C and Fortran programs by at-
tributing the metric values to specific source code lines. We
focus on low overhead, fully automatic tracing of temporal
data for a Java virtual machine and application. Our visual-
izations provide detailed information about the hardware per-
formance and the behavior of the virtual machine.

7 Future Work

This paper uses thePerformance Explorer to explore
the performance behavior of one pseudojbb warehouse thread
on one virtual processors. We are interested in performing ad-
ditional experiments with more warehouses on one or more
virtual processors, as well as exploring other benchmarks, to
determine how the POWER4 HPM data may help to under-
stand application behavior.

To provide temporal data, the system currently uses the
context-switching among Java threads as the delimiter for
counting intervals. Because the stop-the-world garbage col-
lector prevents thread switching while it is executing, the sys-
tem views a garbage collection, which can be longer than
10ms, as a single trace record. Because it is desirable to pro-
vide finer granularity for VM operations that disable context-
switching, we plan to explore the addition of a separate trig-
ger for capturing HPM information that will be in effect even
when thread switching is disabled.

The adaptive optimization system of Jikes RVM’s uses a
cost/benefit model to determine which methods of an appli-
cation should be optimized and at what optimization level [6].
We can leverage this system to attempt to selectively cap-
ture critical computations of the code in an automatic man-
ner. Following in the direction of Arnold et al. [7], we could
capture detailed profile information for only those methods
that execute often. Specifically, we can instruct the optimiz-
ing compiler to automatically insert VM calls to partition the
most time consuming computations and capture HPM infor-
mation for these computations.

In this paper we explore using interactive visualization to
drive performance analysis, which enables one to see large-
and small-scale patterns, and to look at the data from any de-
sirable perspective. A complimentary approach is to use sta-
tistical analysis to reduce the dimensional space. This is a
worthwhile approach that we plan to explore.

8 Conclusions

We describe a system for exploring the low-level behavior
of Java applications. Our system generates traces contain-

ing data obtained from hardware performance monitors and
provides an interactive graphical user interface to explore the
data. Although prior work presents tools for accessing hard-
ware performance monitors, our work is unique in that it cor-
rectly attributes behavior to Java threads in a multithreaded
system running on an multiprocessor. Our work is imple-
mented in the context of Jikes RVM.

We demonstrate the usefulness of our tools by applying
them to understanding the behavior of pseudojbb, a variant of
the SPECjbb2000 benchmark. We demonstrate that our tools
are able to identify as-yet unknown performance characteris-
tics of the benchmark and are able to guide us in understand-
ing the reasons for the observed performance characteristics.
This understanding is essential for designing new high-payoff
optimizations and for tuning applications and run-time sys-
tems for the best performance.

9 Acknowledgments

The authors thank Laureen Treacy for proofreading earlier
drafts of this work. Amer Diwan and Matthias Hauswirth
were partially supported by NSF grants CCR-0085792 and
CCR-0133457. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsors.

References

[1] Dong H. Ahn and Jeffrey S. Vetter. Scalable analysis tech-
niques for microprocessor performance counter metrics. In
Proceedings of the 2002 ACM/IEEE conference on Supercom-
puting, pages 1–16. IEEE Computer Society Press, 2002.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.
Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño vir-
tual machine.IBM Systems Journal, 39(1):211–238, February
2000.

[3] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek
Lieber, Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn
Hummel, Janice C. Sheperd, and Mark Mergen. Implementing
Jalapẽno in Java. ACM SIGPLAN Notices, 34(10):314–324,
October 1999. Published as part of the proceedings of OOP-
SLA’99.

[4] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting
hardware performance counters with flow and context sensitive
profiling. ACM SIGPLAN Notices, 32(5):85–96, May 1997.
Published as part of the proceedings of PLDI’97.

[5] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay
Ghemawat, Monika R. Henzinger, Sun tak A. Leung, Rich-
ard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger, and
William E. Weihl. Continuous profiling: Where have all
the cycles gone? ACM Transactions on Computer Systems,
15(4):357–390, November 1997.

[6] Matthew Arnold, Stephen Fink, David Grove, Michael Hind,
and Peter F. Sweeney. Adaptive optimization in the Jalapeño
JVM. ACM SIGPLAN Notices, 35(10):47–65, October 2000.
Proceedings of the 2000 ACM SIGPLAN Conference on Ob-
ject Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA’00).

[7] Matthew Arnold, Michael Hind, and Barbara G. Ryder. On-
line feedback-directed optimization of Java.ACM SIGPLAN
Notices, 37(11):111–129, November 2002. Proceedings of
the 2002 ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOP-
SLA’02).

[8] Steve Behling, Ron Bell, Peter Farrell, Holger Holthoff, Frank
O’Connel, and Will Weir.The POWER4 Processor Introduc-
tion and Tuning Guide. Redbooks. IBM Corporation, Interna-
tional Technical Support Organization, 2001.

[9] Rudolf Berrendorf, Heinz Ziegler, and Bernd Mohr.
PCL - the performance counter library. http://www.fz-
juelich.de/zam/PCL.

[10] Stephen Blackburn, Perry Cheng, and Kathryn McKinley. Oil
and water? High performance garbage collection in Java with
JMTk. In 26th International Conference on Software Engi-
neering, May 2004.

[11] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application perfor-
mance tuning using hardware counters. InProceedings of the
2000 ACM/IEEE Conference on Supercomputing, Dallas, TX,
November 2000.

[12] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David
Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. C.
Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeño
dynamic optimizing compiler for Java. InACM 1999 Java
Grande Conference, pages 129–141, June 1999.

[13] Harold W. Cain, Ravi Rajwar, Morris Marden, and Mikko H.
Lipasti. An architectural evaluation of Java TPC-W. InPro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture, pages 229–240, Nuevo
Leone, Mexico, January 2001.

[14] Luiz DeRose and Daniel A. Reed. Svpablo: A multi-language
architecture-independent performance analysis system. InPro-
ceedings of the International Conference on Parallel Process-
ing, Fukushima, Japan, September 1999.

[15] Luiz A. DeRose. The hardware performance monitor toolkit.
In Rizos Sakellariou, John Keane, John Gurd, and Len Free-
man, editors,Proceedings of the 7th International Euro-
Par Conference, number 2150 in Lecture Notes in Com-
puter Science, pages 122–131, Manchester, UK, August 2001.
Springer-Verlag.

[16] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Ver-
brugge. Dynamic metrics for Java. InProceedings of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 149–
168, 2003.

[17] Lieven Eeckhout, Andy Georges, and Koen De Bosschere.
How Java programs interact with virtual machines at the mi-
croarchitectural level. InProceedings of the 18th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 169–186,
2003.

[18] Kim Hazelwood and David Grove. Adaptive online context-
sensitive inlining. InInternational Symposium on Code Gen-
eration and Optimization, pages 253–264. IEEE Computer So-
ciety, 2003.

[19] Jikes Research Virtual Machine (RVM).
http://www.ibm.com/developerworks/oss/jikesrvm.

[20] Martin Karlsson, Kevin E. Moore, Erik Hagersten, and
David A. Wood. Memory system behavior of Java-based mid-
dleware. InProceedings of the Ninth International Symposium
on High Performance Computer Architecture, pages 217–228,
Anaheim, CA, February 2003.

[21] Yue Luo and Lizy Kurian John. Workload characterization of
multithreaded Java servers. InProceedings of the 2001 IEEE
International Symposium on Performance Analysis of Systems
and Software, pages 128–136, Tucson, AZ, November 2001.

[22] Cathy May, Ed Silha, Rick Simpson, and Hank Warren.The
PowerPC Architecture. Morgan Kaufmann Publishers, Inc.,
San Francisco, California, 1994.

[23] John Mellor-Crummey, Robert Fowler, and Gabriel Marin.
HPCView: A tool for top-down analysis of node performance.
In Proceedings of the Los Alamos Computer Science Institute
Second Annual Symposium, Santa Fe, NM, October 2001.

[24] Barton P. Miller, Mark D. Callaghan, Joanthan M. Cargille,
Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Kara-
vanic, Krishna Kunchithapadam, and Tia Newhall. The para-
dyn parallel performance measurement tool.IEEE Computer,
28(11):37–46, 1995.

[25] Jeffrey C. Mogul and Anita Borg. The effect of context
switches on cache performance. InProceedings of Fourth In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (Santa Clara, CA),
pages 75–84, 1991.

[26] Oprofile. http://oprofile.sourceforge.net, 2003.

[27] Daniel A. Reed, Ruth. A. Aydt, Roger J. Noe, Philip C. Roth,
Keith A. Shields, Bradley Schwartz, and Luis F. Tavera. Scal-
able performance analysis: The Pablo performance analysis
environment. InProceedings of the Scalable Parallel Libraries
Conference, October 1993.

[28] Pattabi Seshadri, Lizy John, and Alex Mericas. Workload char-
acterization of Java server applications on two PowerPC pro-
cessors. InProceedings of the Third Annual Austin Center for
Advanced Studies Conference, Austin, TX, February 2002.

[29] The Standard Performance Evaluation Corporation. SPEC
JBB 2000. http://www.spec.org/osg/jbb2000, 2000.

[30] Bob Urquhart, Enio Pineda, Scott Jones, Frank Levine,
Ron Cadima, Jimmy DeWitt, Theresa Halloran, and
Aakash Parekh. Performance inspector. http://www-
124.ibm.com/developerworks/oss/pi, 2004.

[31] D. Viswanathan and S. Liang. Java Virtual Machine Profiler
Interface.IBM Systems Journal, 39(1):82–95, February 2000.

[32] Intel VTune performance analyzers.
http://www.intel.com/software/products/vtune.

[33] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David Woot-
ton, Farid Parpia, Anthony Chan, Ewing Lusk, and William
Gropp. From trace generation to visualization: A perfor-
mance framework for distributed parallel systems. InProc.
of SC2000: High Performance Networking and Computing,
November 2000.

[34] Zhichen Xu, Barton P. Miller, and Oscar Naim. Dynamic in-
strumentation of threaded applications. InPrinciples Practice
of Parallel Programming, pages 49–59, 1999.

[35] Marco Zagha, Brond Larson, Steve Turner, and Marty
Itzkowitz. Performance analysis using the MIPS R10000 per-
formance counters. InProceedings of the 1996 ACM/IEEE
Conference on Supercomputing, November 1996.

[36] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider.
Toward scalable performance visualization with Jumpshot.
High Performance Computing Applications, 13(2):277–288,
Fall 1999.

