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Abstract. We present an approach that partitions a software system
into its algorithmically essential parts and the parts that manifest its
design. Our approach is inspired by the notion of an algorithm and its
asymptotic complexity. However, we do not propose a metric for mea-
suring asymptotic complexity (efficiency). Instead, we use the one aspect
of algorithms that drives up their asymptotic complexity – repetition, in
the form of loops and recursions – to determine the algorithmically es-
sential parts of a software system. Those parts of a system that are not
algorithmically essential represent aspects of the design. A large fraction
of inessential parts is indicative of “overdesign”, where a small fraction
indicates a lack of modularization. We present a metric, relative essence,
to quantify the fraction of the program that is algorithmically essential.
We evaluate our approach by studying the algorithmic essence of a large
corpus of software system, and by comparing the measured essence to an
intuitive view of design “overhead”.

1 Introduction

Given today’s large software systems, consisting of tens or hundreds of thousands
of classes, wouldn’t it be nice to be able to automatically distinguish between
their essential and non-essential parts? More specifically, wouldn’t it be nice to
be able to quantify the amount of algorithmically essential code and the amount
of code that primarily serves design? And wouldn’t it be nice to have a tool that
automatically locates the essential code? In this paper we present an approach
towards this goal.

A software system implements a set of interacting algorithms to achieve a
function. As software systems have gotten more complex, software developers
have tried to find techniques to combine and implement the algorithms in such a
way as to not only achieve efficiency of the running code, but also structure in the
software code. The structure is generally referred to as design. There has been
a lot of effort to develop effective design methods. Many of them are based on
Parnas’ fundamental principle of “information hiding” [13]. The expectation is
that good design will impose an overhead (often in the form of extra indirection)
during execution, but that it will provide benefits in terms of understandability
and maintainability of the software.
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In his seminal “No Silver Bullet – Essence and Accident in Software En-
gineering” [3], Brooks provides an intensional definition of essential complexity
(“complex conceptual structures that compose the abstract software entity”) and
accidental complexity (“representation of these abstract entities in programming
languages”). His definition of essential complexity refers to the algorithms to be
implemented in a system. Any implementation of such algorithms in a given
programming language will necessarily entail design decisions such as: Do I ex-
tract this code into a separate method? Do I implement this traversal iteratively
or recursively? Do I use polymorphism or a switch statement? Do I introduce
a facade? Do I use delegation or inheritance? Do I use a visitor pattern or do
I place the computation in the structure itself? All of these design decisions
affect the resulting code. None of them (should) affect the essential algorithms
implemented by the system.

Our goal is to identify the essential parts of a software system by analyzing
its code. To automate this task, we have to provide an operational definition of
essence. We do this by focusing on repetitions. Repetitions are essential for the
algorithmic complexity of a program. If there are no repetitions, the asymptotic
computational complexity is constant, or O(1). While conditionals affect compu-
tational complexity, adding a conditional statement to a structured program can
only reduce its computational complexity. Thus, to keep our analysis tractable,
we focus on the most important algorithmic aspect in code: repetitions.

In most programming languages, there are two forms of repetition: loops and
recursion. Loops correspond to cycles in the control flow graph of a method, while
recursions correspond to cycles in the call graph of a program. Our analysis thus
identifies the loops in all methods and it determines the recursive cycles in the
program’s call graph. The duality between loops and recursions allows us to use
the same algorithm for both analyses.

More precisely, our analysis creates forests of nested cycles for each of these
graphs. For control-flow graphs, such a forest is known as a “loop nest tree”.
A cycle is a set of nodes so that each node in the set is reachable from each
other node in the set. Moreover, each cycle has a set of header nodes, through
which execution can enter the cycle. In control-flow graphs directly compiled
from structured programs, loops contain only a single header node. However,
loops in control flow graphs of unstructured programs, and recursive cycles in
the call graph, can have multiple headers.

Our approach to determine the algorithmically essential parts of a program
identifies all header nodes of iterative and recursive cycles. Nodes in cycles that
are not headers are not deemed algorithmically essential. This relatively straight-
forward approach allows us to identify the (algorithmically inessential) methods
introduced by design decisions such as the use of collections, facades, iterators,
encapsulation, or visitors.

The result of our analysis is a representation we call the loop call graph,
in which we highlight essential parts of the program. Moreover, based on that
representation, we compute metrics that quantify the algorithmic essence of a
system (or subsystem) as well as its design “overhead”.
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1.1 Rationale

Our approach is based on the following design rationale:

Localizable. We do not just want to have a global overall metric measuring
essence, but we want an approach that explicitly identifies essential and
inessential parts in programs.

Intuitive. The program parts identified as essential need to correspond to a
programmer’s intuition of what is essential in the underlying algorithm.

Stable. When analyzing two implementations of the same algorithm, the essen-
tial parts in both implementations should correspond to each other.

Language-independent. Our approach should not depend on a specific pro-
gramming language. Two equivalent programs written in different languages
should result in equivalent essential parts.

The remainder of this paper is structured as follows. Section 2 presents a
motivating example. Section 3 explains our approach and analysis. Section 4
discusses the tool that implements our approach for Java programs. Section 5
uses our approach to characterize a large body of Java programs. Section 6
discusses the relationship between essence and design. Section 7 connects essence
to related work. Section 8 discusses usage scenarios for our metric and limitations
of our approach, and Section 9 concludes.

2 Motivation

Consider the three implementations1 of the factorial function in Listings 1.1,
1.2, and 1.3. They vary in their amount of indirection: Listing 1.1 expresses the
computation as two nested for loops, Listing 1.2 factors out the multiplication
into a separate method, and Listing 1.3 introduces separate methods for even
more basic computational steps. However, all three implementations perform the
same essential computation.

Many developers probably would consider Listing 1.2 as the best of the three
designs. We believe this is because neither the call graph nor the control flow
graph is excessively big. Figure 1 shows those two graphs (left and center col-
umn) for each of the three listings (top to bottom). Listing 1.1 has a relatively
large control-flow graph, while Listing 1.3 has a similarly large call graph. Unfor-
tunately, we cannot use this balance between call graph and control-flow graph
size as guidance for a design metric: the size of the call graph is unbounded
because it grows with the size of the program.

However, if we identify the repetitions (in these iterative programs, the loops),
we can use them to measure the amount of algorithmically essential code versus
the amount of design-related code. We do this in our new representation, the

1 For the sake of a simple example, assume the programming language does not have
a multiplication operator, which requires the developer to implement multiplication
explicitly.
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Listing 1.1. Too little indirection
private stat ic int f a c ( int n) {
int f = 1 ;
for ( int i =1; i<=n ; i++) {
int p = 0 ;
for ( int j =1; j<=i ; j++) {
p = p + f ;
}
f = p ;
}
return f ;
}

Listing 1.2. Enough indirection
private stat ic int f a c ( int n) {
int f = 1 ;
for ( int i =1; i<=n ; i++) { f=mul ( f , i ) ; }
return f ;
}
private stat ic int mul ( int a , int b) {
int p = 0 ;
for ( int j =1; j<=a ; j++) {p=p+b ;}
return p ;
}

loop call graph (right-most column in Figure 1), which adds loop nodes into
the call graph. Having a single representation allows us to combine information
about recursion with information about loops.

Figure 1 shows that each of the three implementations contains two loops.
The loop call graph shows that, at runtime, the multiplication loop will be nested
inside the factorial loop, no matter which implementation we use. Moreover,
it shows that the number of inessential nodes in the loop call graphs differs
significantly. The relative essence, or the number of essential nodes divided by
the number of method nodes, changes from 2/1 to 2/2 to 2/5. As these values
show, a high relative essence is not necessarily positive: it may indicate the
absence of any modularization. However, an essence close to 0 is an indication
of “overdesign”, or too much indirection.

3 Approach

Our approach to identifying essential and accidental parts of computation is to
look for repetition in the computation. This repetition manifests itself either as
loops (cycles in control-flow graphs) or recursions (cycles in call graphs).
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Listing 1.3. Too much indirection
private stat ic int f a c ( int n) {
int f = 1 ;
for ( int i =1; lessOrEqual ( i , n ) ; i=addOne( i ) ) { f=mul ( f , i ) ; }
return f ;
}
private stat ic int mul ( int a , int b) {
int p = 0 ;
for ( int j =1; lessOrEqual ( j , a ) ; j=addOne( j ) ) {p=add (p , b ) ; }
return p ;
}
private stat ic int add ( int a , int b) {
return a+b ;
}
private stat ic boolean l e ssOrEqual ( int a , int b) {
return a<=b ;
}
private stat ic int addOne( int a ) {
return add ( a , 1 ) ;
}

To reason about repetition overall, we have to combine information from both
of these graphs. In theory, we could build a whole-program control-flow graph. In
this way, call graph cycles would result in cycles in the whole-program control-
flow graph. However, given the size of modern software, the size of the resulting
whole-program control-flow graph would grow too big for efficient analysis.

Instead of combining call graph and control-flow graph, we propose a multi-
level analysis. We analyze each control-flow graph individually to find loops, and
we analyze the call graph to find recursions. Each loop and each recursion header
represents a computationally essential part of the program, while all other call
graph nodes represent accidental parts. Then we combine the results to present
the essential and accidental parts of the program and to measure its essence.

3.1 Overview

Our overall approach can be summarized as follows:

1. Build control-flow graphs
2. Identify loop forests in control-flow graphs
3. Build call graph
4. Identify recursion forests in call graph
5. Combine loop forests & call graph into loop call graph
6. Compute metrics

Building control-flow graphs. Control-flow graphs of programs written in
languages supporting exception handling often contain a substantial number



VI

Call graph Control-flow graph Loop call graph
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Fig. 1. Call graph, control-flow graph, and loop call graph

of exception edges. We expect the control-flow graphs to include those edges,
so that we are able to analyze the whole program, including all its exception
handlers.
Identify loop forests in control flow graphs. We use an approach to loop
detection that works on arbitrary (even un-structured) control flow graphs. Sec-
tion 3.2 describes that approach in detail.
Build call graph. We expect the call graph to include all feasible call edges
(e.g. including those due to polymorphic invocations and calls through function
pointers). Naively, this can be satisfied by adding edges between each pair of
methods. However, such an extremely conservative approach would lead to large
numbers of cycles in the call graph and would greatly overstate the amount of
recursion in the program.

For strongly-typed languages with polymorphic method calls, efficient anal-
yses such as class-hierarchy or rapid type analysis [1] are able to eliminate most
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infeasible call edges. For weakly-typed languages, more expensive flow-sensitive
analyses or pointer analyses are necessary to get a reasonably precise call graph.

Our recursion detection approach requires one node of the call graph to be
denoted as the entry node, and it requires all other nodes to be reachable from
that node. When analyzing entire programs, this usually corresponds to the
main method. When analyzing libraries, we introduce an artificial entry node
that points to all public API methods provided by the library.

Sometimes we are interested in analyzing an application but to exclude (some
of) the libraries. In that case we do not create any nodes for the excluded library
methods. Call sites in the application that point to excluded library methods do
not lead to any call edges. Frameworks, like libraries, are called by the applica-
tion, but they also call back into the application. When analyzing frameworks in
isolation, we create neither of these (incoming or outgoing) call edges, and thus
we may miss recursive cycles that cross between application and framework2.
Identify recursion forests in call graph. Skiena [16] proposed to identify
recursion in call graphs with the purpose of optimizing non-recursive code. He
labels all nodes that are involved in a recursion cycle. However, not all methods
involved in a recursion cycle are essential for the computational complexity of the
program. Analog to loop analysis in control-flow graphs, we want to identify the
“headers” of recursion cycles, and we want to properly handle nested recursion
cycles. Doing so requires us to determine recursion forests, forests consisting
of trees of nested recursion cycles (“loops”). The duality between control-flow
graphs and call graphs allows us to use the same approach we use for detecting
loop forests in control-flow graphs.
Combine loop forests and call graph into loop call graph. To present
the results of our analysis in a single structure, we combine the loops and the
call graph into a loop call graph. A loop call graph contains two kinds of nodes:
method nodes represent methods and loop nodes represent loops. The graph
contains two kinds of edges: call edges represent method calls and loop entry
edges represent loop entries. Call edges point from a method or a loop to a
method (the callee). Loop entry edges point from a method or a loop to a loop.
Loop entry edges originating from a loop represent loop nesting (entry of an
inner loop from an outer loop). Call edges only originate in a method if the
call site is not located in a loop (otherwise they originate in the innermost loop
containing the call site).

Figure 2 shows the loop call graphs for four variations of the “best” factorial
example in Listing 1.2. The left-most graph corresponds to the original example,
the other graphs replace one or both methods (fac or mul) with recursive im-
plementations. Loop entry edges are rendered with dotted lines, while call edges
are solid. Loop nodes are filled in blue. Method nodes that are recursion headers
are filled in red. The method node that corresponds to the graph entry (fac)
has a bold outline.

2 We have observed such cycles in frameworks, such as GUI toolkits, that contain
recursively invokable event dispatch methods.
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Fig. 2. Factorial Loop Call Graphs and Metrics

Compute metrics. Given the loop call graph, we compute the metrics that
quantify the algorithmic essence of the program. First, we define three direct
absolute-scale metrics to count the different kinds of nodes in the loop call graph:

NN = |non-recursive method nodes|
NR = |recursive method nodes|
NL = |loop nodes|
Second, we compute the absolute essence E, a simple indirect metric that

counts the essential nodes in the loop call graph:
E = NL + NR

Finally, we compute indirect ratio-scale metrics to be able to reason about
essence independently of program size, culminating in our measure of relative
essence e.

recursiveness = NR

NN+NR

loopyness = NL

NN+NR

e = E
NN+NR

Figure 2 shows that E is the same (2) for all four implementations of the
program. This means that E is agnostic to the choice between recursive or iter-
ative implementations. Moreover, Figure 1 shows that E is not affected by the
design of the program: no matter what degree of indirection is added, E stays
the same (2). NN , however, significantly changes with the design of the program:
for Figure 1 it varies between 1 and 5, and it clearly correlates with the amount
of indirection introduced by the programmer. Our main metric, e, also stays the
same (1) for all four implementations in Figure 2. It does clearly show, though,
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the differences between the three implementations in Figure 1 (2, 1, and 0.4; for
the “underdesigned”, nice, and ”overdesigned” implementations).

3.2 Forest Construction

Two steps in our approach require the construction of forests representing the
cycle nesting structure in a graph. We need to find loop forests in control-flow
graphs and recursion forests in loop call graphs.
Reducibility. Loop identification and loop forest construction are standard
analyses in optimizing compilers. The control-flow graphs compilers operate on
are usually derived from structured source programs, and thus they are usually
reducible3 (and even if they were not, optimizers could just decide to skip loop
optimizations on irreducible control flow graphs). For this reason, the classic loop
identification algorithms used in compilers are unable to properly identify loops
in irreducible graphs. Unfortunately, the graphs we encounter in our static anal-
ysis, in particular the call graphs (for example those in Figures 5 and 6), are not
necessarily reducible. Moreover, unlike a compiler optimization, we cannot just
bail out if we encounter an irreducible graph (especially because many realistic
call graphs are irreducible, and analyzing the call graph is essential). Thus, we
cannot use the classical natural-loop identification algorithms for constructing
our recursion forests.
Forests in irreducible graphs. We base our approach on prior work on loop
identification in irreducible flow graphs. Ramalingam [14] provides an axiomatic
framework for this problem and generalizes prior approaches by Sreedhar et
al. [18], Havlak [7], and Steensgaard [19]. Algorithm 1 represents the core of
loop forest construction. It iteratively removes specific edges from the graph until
the graph contains no more cycles. FindStronglyConnectedComponents
corresponds to Tarjan’s algorithm, and returns the set of strongly-connected
components (the set of loop bodies). In the inner loop, the algorithm iterates
over each loop body to determine its header nodes. Unlike in reducible graphs, in
irreducible graphs loops can have multiple headers. IdentifyHeadersSteens-
gaard thus returns a set of header nodes for each loop. The algorithm adds
each newly identified loop L into the loop forest F . RemoveLoopbackEdges
in Algorithm 3 then removes all loopback edges (edges that point to a header
from within the body) from the graph. Finally, the algorithm repeats by again
finding strongly-connected components on the now smaller graph.
Header identification. We use Steensgaard’s variant of Ramalingam’s ap-
proach, because it produces loops with headers that most closely correspond to
the intuitive understanding of the recursion structure in programs. With Steens-
gaard’s variant, the headers of a loop correspond to all entry nodes (all nodes
pointed to from outside the loop). This is more intuitive than Havlak’s or Sreed-
har’s variants, which consider subsets of the entry nodes to be headers.

3 In a reducible flow graph [8], each strongly-connected component can only have one
entry edge.
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Algorithm 1 ConstructLoopForest

Require: graph G = 〈N, E〉
Ensure: loop forest F = 〈L, C〉
{S}CC set S, loop L, loop body B, loop headers H
{n}ode to loop map M = 〈N, L〉
S ← FindStronglyConnectedComponents(G)
while S 6= ∅ do

for all B ∈ S do
H ← IdentifyHeadersSteensgaard(G, B)
L← (H, B)
Lp ← FindParentLoop(F, L, M)
C ← (Lp, L)
F ← F ∪ {(L, C)}
RemoveLoopbackEdges(G, L)

end for
S ← FindStronglyConnectedComponents(G)

end while
return F

4 Implementation

We implemented a static program analysis tool to measure the essence of Java
programs. Our tool uses ASM [12] to statically analyze Java class files. We
build control-flow graphs that include all exception edges and use class hierarchy
analysis [1] to statically resolve polymorphic call targets. We implemented the
forest construction algorithm described in Section 3.2. Our tool determines the
number of loops, recursion headers, and total call graph nodes, and computes
our metric of essence. It also produces a visualization of the loop call graph with
nodes annotated accordingly.

Algorithm 2 FindParentLoop

Require: loop forest F = 〈L, C〉, new loop L = 〈H, B〉,
node to loop map M = 〈N, L〉

Ensure: return loop L’s parent Lp, or ∅ if L is a root
Lp ← ∅
for all n ∈ B do

if ∃Lm ∈ L such that (n, Lm) ∈M then
Lp ← Lm

end if
end for
for all n ∈ B do

M ←M \ {(n, Lp)} ∪ {(n, L)}
end for
return Lp
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Algorithm 3 RemoveLoopbackEdges

Require: graph G = 〈N, E〉, loop L〈H, B〉, H ⊆ B ⊆ N
Ensure: ∀h ∈ H ∀b ∈ B (b, h) /∈ E

for all h ∈ H do
for all b ∈ B do

E ← E \ {(b, h)}
end for

end for

Algorithm 4 IdentifyHeadersSteensgaard

Require: graph G = 〈N, E〉, loop body B ⊆ N
Ensure: loop headers H ⊆ B

H ← ∅
for all n ∈ B do

if ∃n1 ∈ N such that n1 /∈ B ∧ (n1, n) ∈ E then
H ← H ∪ {n}

end if
end for
return H

5 Characterization

To evaluate our new metric, we studied the essence of a large number of Java pro-
grams. Our programs consist of the 100 applications of the Qualitas Corpus [20]
release 20100719r and the two dominant Java benchmark suites: SPEC JVM [17]
release 2008, and Dacapo [2] release 9.12-bach. We included all systems from all
three suites. For Qualitas, we used the meta data to indicate which classes to
analyze. Instead of including one JRE in the Qualitas corpus, we analyzed JRE
1.6.0 for three different platforms: Linux, Mac OS X, and Windows, because the
Java runtime libraries can differ significantly by platform. For SPEC JVM, we
analyzed the classes indicated in other characterization studies [21]. For Dacapo,
the set of analyzed packages corresponds to the set of packages used when the
benchmarks are run. We label each system with a suffix, according to the corpus
it comes from (Q for Qualitas, S for SPEC JVM, D for Dacapo, and we use J
for the JREs).

5.1 Size

Our corpus consists of 133 systems, with a total of just over 2 million Java
methods and 229536 loops. The systems range in size between 16 and 257562
methods (median: 5132). 159052 of the methods are recursion headers, and there
are a total of 38845 recursive cycles. While 31213 (80%) of those recursions have a
single header method, 7632 contain multiple headers (and thus lead to irreducible
call graphs).
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5.2 Essence

The relative essence e of the systems ranges between 0.037 and 0.66 (median:
0.206). Figure 3 plots relative essence versus program size. The logarithmic
x-axis shows program size in terms of the number of loop call graph nodes.
The highlighted band shows the first, second, and third quartiles of the essence
distribution. Half of the systems lie within that band. Systems outside that band
are somewhat unconventional.
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All the systems with fewer than 200 nodes come from the SPEC JVM suite.
Many of them correspond to small, loop-driven algorithm implementations. The
fact that our metric separates these systems from “normal” systems in the Qual-
itas corpus and the Dacapo suite corresponds to the findings of the authors of
the Dacapo suite [2].

The relative essence of larger systems usually is closer to the median of the
corpus. Large systems, such as the Mac OS X JRE with 219893 methods, are
rarely written by a single developer or team, and thus they constitute a mix
of code contributions, each contribution with a somewhat different design style.
When measuring the essence of the entire system, the different design styles are
mixed together and the essence gets close to the median essence of the corpus.
For this reason, large systems with a particularly high or low relative essence
are interesting. Weka is such a large system, with 30589 nodes and a high e of
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0.395. Weka is a large collection of machine learning algorithms, and thus its
high algorithmic essence is not surprising. JMoney is at the opposite end of the
essence spectrum. It is a money management application based on the Eclipse
platform. It consists mostly of glue code that connects various Eclipse plugins.
It delegates most repetitions either to existing GUI controls (such as table grids)
or collection classes (such as Java’s Arrays.sort).

5.3 Essence by System

Figure 4 presents details about the essence of all the systems in our corpus.
We ordered the systems on the x-axis by relative essence. The top chart shows
the relative essence, consisting of its two components (loops and recursions).
The bottom chart shows the size of the systems in terms of their number of
loop call graph nodes. Bars are stacked according to the different node types:
non-recursive methods (“normal”), recursive methods, and loops. The y-axis is
cropped at 50000, however six systems had well over 50000 nodes (the three
JREs, Dacapo’s trade benchmarks, and the Qualitas version of Eclipse).
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Fig. 4. Essence, recursive methods, and loops in Qualitas, SPEC, and Dacapo systems

Two of the systems in our corpus are traditionally used as good examples
of design. JUnit is known for its high design pattern density, and JHotDraw is
partially written by the same authors. Those two systems implement dramat-
ically different functionality, however, their relative essence is relatively close
(0.144 and 0.153, respectively). Their essence is significantly below the median
of 0.206. One could use systems like these, with a design of an exemplary quality,
as a reference for the amount of essence a well-designed system should have.

Our corpus contains several groups of related systems. The relative essence
of each of the three JREs is above the median. The Windows and Linux ver-
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sions, which are almost identical, have the same essence of 0.235. The Mac OS
X version has a slightly higher essence of 0.242. That version includes additional
libraries, such as the QuickTime multimedia framework, a possible source for
more algorithm-dominated code. The corpus contains two versions of Derby, one
in Qualitas and the other in SPEC. Given the different definitions of what consti-
tutes part of a system, the set of analyzed classes in such cases can significantly
differ. For Derby, even though the set of analyzed methods differs, the essence is
nearly the same (0.235 vs. 0.242). For Xalan, the difference is relatively similar
(0.213 vs. 0.240). For Sunflow, which is part of all three suites, the relative essence
differs significantly (0.222, 0.258, 0.275). However, the three suites include signif-
icantly different subsets of the Sunflow classes. The essence differs for Eclipse in
Dacapo (0.333) and Qualitas (0.233), but Qualitas includes a more recent version
of Eclipse and a much larger set of plugins. JRuby (0.158) and Jython (0.206) are
two runtime environments for dynamic languages. Jython makes much heavier
use of recursion. Finally, SableCC (0.154) and Javacc (0.374) are located almost
at the opposite ends of the spectrum. They are both parser generators. The
SableCC documentation points out the focus on generating easy-to-maintain,
object-oriented, design-pattern-based parsers. This indicates that the develop-
ers of SableCC followed the same design approach when writing SableCC itself. It
is interesting to note that the relative essence of SableCC and the well-designed
JHotDraw is the same.

6 Essence and Design

In this section we show that essence is directly related to object oriented design
concepts, such as code smells, refactorings, and design patterns.

6.1 Essence and Code Smells

Code smells help to identify specific design problems. To understand how code
smells relate to essence, we performed two tests.

First, we manually analyzed the commonly known code smells [5], to un-
derstand how they correlate with relative essence4. Of the 31 smells, 3 strongly
indicate low relative essence, 2 weakly indicate low relative essence, 2 weakly
indicate high relative essence, and 14 strongly indicate high relative essence.
This means that most of the commonly known smells represent issues where
the relative essence is too big. This may be an indication that in practice, most
problems with software are related to the lack of modularization. Nevertheless,
there are some smells (especially “Lazy Class/Freeloader”, “Middle Man”, and
“Shotgun Surgery”) that indicate that the relative essence is too low and the
amount of indirection too high.

Second, in our corpus of 211507 real-world classes, we manually analyzed
those classes that exhibited the highest and the lowest relative essence, to un-
derstand their design and to find potential code smells5. The 14 classes with the
4 Table with results on http://sape.inf.usi.ch/essence/smells
5 Table with results on http://sape.inf.usi.ch/essence/outliers
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highest relative essence produce mostly “Long Method” smells, often accompa-
nied by “Comments” to break the long method into understandable blocks. In
our corpus, 125640 classes (59%) have zero relative essence. Out of that large
pool, we picked two small samples. The first zero-essence sample represents the
classes with the largest number of methods (and thus method nodes in the
loop call graph). This sample, in which each class contains at least 90 methods,
represents many “Data Classes” and “Middle Men”. However, it also contains
automatically generated classes and adapters with almost empty default method
implementations. To avoid the bias possibly introduced by exclusively focusing
on classes with many methods, we also investigated a second, random, sample
of zero-essence classes. That sample also contains some bad smells like “Data
Class”, however many classes in that sample are participants in design patterns,
and thus make positive use of indirection.

6.2 Essence and Refactorings

Refactoring is one way to fix the cause of a code smell. In Fowler’s “Refactoring”
book [5], Beck differentiates between two kinds of refactorings: those that add
indirection where programs are “missing one or more benefits of indirection”
(such as for enabling of sharing of logic, for explaining the intent separately
from implementation, for isolating change, and for encoding conditional logic
through polymorphism), and those that remove “parasitic” indirection which
isn’t paying for itself (such as left-over intermediate methods, or unused poly-
morphism). According to Beck, refactoring essentially maximizes the amount of
design qualities while minimizing (or at least not unnecessarily increasing) the
amount of indirection.

We analyzed how well-known refactorings relate to relative essence, and thus
to the amount of indirection6. Of the 85 refactorings we studied, only 18 may
increase relative essence (14 strongly, 4 of those to a lower degree). A much
larger fraction, 47 refactorings, may decrease relative essence (42 strongly, 5
to a lower degree). Three pairs of refactorings most directly relate to relative
essence: “Inline Method” and “Extract Method”, “Remove Middle Man” and
“Hide Delegate”, and “Replace Delegation with Inheritance” and “Replace In-
heritance with Delegation”. For each of these pairs, the first refactoring increases
relative essence and the second refactoring (representing the inverse transforma-
tion) decreases relative essence. The first two pairs directly introduce or remove
delegation. The last pair is a bit more subtle. It transforms between delega-
tion and inheritance. Inheritance could be seen as an implicit form of delegation
(dynamic method lookup instead of explicit indirection to the delegate in the
application code).

6.3 Essence and Design Patterns

The presence of design patterns in a software system often is considered an in-
dicator of good quality. It is easy to see how design patterns like a “Facade”,
6 Table with results on http://sape.inf.usi.ch/essence/refactorings
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an “Adapter”, a “Mediator”, or a “Bridge” introduce extra indirections and de-
crease the relative essence of software. The effect of some other design patterns
on essence are a bit less straightforward. We thus manually analyzed this rela-
tionship7 for the well-known “Gang of Four” [6] design patterns. None of the 23
patterns directly implies a higher relative essence. Only 4 patterns are mostly
uncorrelated with relative essence. The vast majority (19) represent a design
with a low relative essence. Given that design patterns generally reduce relative
essence, relative essence could be seen as a measure of design pattern density.

In the remainder of this section we describe the effect of a more complicated
pattern, “Visitor”, which is often used in a recursive context. As our running ex-
ample, assume we want to implement a program that can evaluate abstract
syntax trees that represent arithmetic expressions. Algorithm 5 shows the
essence of the solution in the form of pseudo-code. Its relative essence would
be e = NR/NR = 1.

Algorithm 5 Eval

Require: n is a tree node, n.type is its type, n.value is its value, n.left and n.right
are its children

Ensure: return value = result of evaluating the subtree rooted in n
if n.type = LITERAL then

return n.value
else if n.type = ADD then

return Eval(n.left) + Eval(n.right)
else if n.type = SUBTRACT then

return Eval(n.left)− Eval(n.right)
else if n.type = MULTIPLY then

return Eval(n.left) · Eval(n.right)
end if

Listing 1.4 provides a possible implementation of this algorithm in Java,
without using the visitor pattern. The tree is represented using a class hierarchy,
rooted in an abstract superclass Node. The only method of that class, eval(),
evaluates a node. Node has two subclasses, Literal which represents a constant
value, and BinOp, which represents a binary operation. BinOp keeps references to
its two operand nodes. Add is one of the three BinOp subclasses, representing an
addition. Subtract and Multiply are analog to Add, and are omitted for brevity.
In our example, the program entry point is Main.calc(), which receives a tree
via a reference to its root node and contains a polymorphic call to Node.eval().

The top of Figure 5 shows the call graph of this program. The three essential
nodes corresponding to the three eval() methods represent the headers of one
recursive cycle. We call these kinds of recursive cycles “polymorphic recursions”,
because their header nodes are implementations of a method declared in a super
type, and because they are invoked polymorphically in a recursive way. The three

7 Table with results on http://sape.inf.usi.ch/essence/patterns
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Listing 1.4. Polymorphic implementation in Java
public abstract class Node {
public abstract int eva l ( ) ;
}

public class L i t e r a l extends Node {
private int value ;
public L i t e r a l ( int value ) {
this . va lue = value ;
}
public int eva l ( ) {return value ;}
}

public abstract class BinOp extends Node {
private Node a ;
private Node b ;
public BinOp(Node a , Node b) {
this . a = a ; this . b = b ;
}
public Node getA ( ) {return a ;}
public Node getB ( ) {return b ;}
}

public class Add extends BinOp {
public Add(Node a , Node b) {
super ( a , b ) ;
}
public int eva l ( ) {
return getA ( ) . eva l ( ) + getB ( ) . eva l ( ) ;
}
}

public class Main {
public int c a l c (Node n) {return n . eva l ( ) ; }
}
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nodes are all header nodes of this single cycle (according to Steensgaard’s ap-
proach to header node identification), because there is a node outside the cycle,
Main.calc(), which points to all of them. If we turned the call in Main.calc()
into a monomorphic call (e.g. by changing the type of Main.calc()’s parame-
ter from Node to Add), this would change: We would end up with one header
node (Add.eval). However, the loop forest algorithm would detect a nested re-
cursive cycle (after eliminating the loopback edges pointing to Add.eval), with
Subtract.eval and Multipy.eval as its headers. This means that the number
of recursive cycles would change, which is the reason for why we count header
nodes and not recursive cycles when computing essence. With our approach, no
matter whether we enter this recursive cycle via a polymorphic or a monomor-
phic call, we end up with three header nodes and the relative essence stays the
same8: e = (NL + NR)/(NN + NR) = (0 + 3)/(3 + 4) = 0.43. The bottom of
Figure 5 shows the recursion cycle forest of this program, which includes a single
recursive cycle (rectangle) containing just the three header nodes.

Main.calc

Add.eval

Multiply.eval

Subtract.eval

Literal.eval BinOp.getA BinOp.getB

Main.calc

FOREST

headers: 
Multiply.eval
Subtract.eval

Add.eval

Literal.eval BinOp.getA BinOp.getB

Add.eval Subtract.eval Multiply.eval

Fig. 5. OO call graph and recursion forest

For space reasons, we omit the visitor-based implementation of the traversal.
We only show the resulting loop call graph at the top of Figure 6. As we can
8 Note that header node identification approaches other than Steensgaard’s can violate

this property.
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see, we still have three essential methods (the three concrete elements’ accept
methods). They form the headers of a larger recursive cycle, which also includes
the visitor’s visit methods. Our approach correctly identifies that the visitor
pattern introduces an extra level indirection for each method. The number of
essential nodes stays the same (E = 3), however, the relative essence decreases
due to the extra level of indirection: e = E/(NN + NR) = 3/(3 + 10) = 0.23.
Also note that the recursion forest at the bottom of the figure shows the same
structure, which means that the visitor does not introduce any nested recursive
cycles. This corresponds to intuition, because the introduction of the visitor
pattern does not change the algorithmic aspect of the program.

Main.calc

Subtract.accept

Add.accept

Literal.accept

Multiply.accept

EvalVisitor.getResult

EvalVisitor.visitSubtract

EvalVisitor.visitAdd

EvalVisitor.visitLiteral

EvalVisitor.visitMultiply

Literal.getValue

BinOp.getB BinOp.getA

Main.calc

FOREST

headers: 
Multiply.accept
Subtract.accept

Add.accept

Literal.accept BinOp.getA BinOp.getB Literal.getValue EvalVisitor.getResult EvalVisitor.visitLiteral

Add.accept Subtract.accept Multiply.accept EvalVisitor.visitAdd EvalVisitor.visitSubtract EvalVisitor.visitMultiply

Fig. 6. Visitor call graph and recursion forest
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7 Related Work

Our approach – and our metric – is related to and inspired by two seminal works
in software engineering.

Our operational definition of essence, based on the loop call graph and our
two metrics, is similar in spirit to Brook’s intensional definition [3] of essence
and accident. We start with the representation of a solution formulated in a
concrete programming language, which, according to Brooks, contains essential
and inessential aspects. Instead of finding an abstract model representing the
complete essence (and only the essence) of a solution, we aim for the more
tractable task of separating the parts of the concrete program that are likely
essential from the parts that are likely accidental.

Parnas’ “On the criteria to be used in decomposing systems into modules” [13]
describes the concept of information hiding. The tool enabling information hid-
ing is the use of indirection in the form of functions that hide design decisions and
internal data structures. Relative essence is our approach towards quantifying
the amount of such indirection.

7.1 Conceptual Relationship to Existing Metrics

Essence is a design metric. In this section and the next, we analyze whether
essence just represents a different perspective on an existing design metric, or
whether essence represents a design property that is not captured by exist-
ing metrics. While this section discusses the conceptual relationships between
essence and intuitively related metrics, the next section empirically studies the
correlation of essence with well-known existing metrics.

Essence is particularly related to four kinds of software metrics: design pat-
tern density, coupling and cohesion, cyclomatic complexity, and bloat.

Design pattern density. Essence is related to Riehle’s design pattern den-
sity [15]. Design pattern density determines “which parts of a design are design
pattern instances, and which parts are not”. It is defined as “the percentage on
an object-oriented framework’s collaborations that are design pattern instances”.
Measuring pattern density has many potential benefits, such as estimating the
maturity or quantifying the ease of learning a framework. While design pattern
density separates the “good” (pattern-based) parts of the design from the “bad”
parts of the design, our new metric, essence, separates the overall design from the
algorithmic core of a program. A second difference between our essence metric
and design pattern density is that our metric is fully automatically computable
from code, while design pattern density depends on the prior identification of
collaborations and design patterns. While there is much active research in that
direction, we are unaware of an approach to automatically and reliably identify-
ing all the necessary collaborations and design patterns in code.

Coupling and cohesion. Essence is also related to coupling and cohe-
sion [4]. While coupling and cohesion tell you what you should move around,
essence tells you what you might want to remove, and it tells you about the
absence of indirections you might want to add.
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Cyclomatic complexity. Essence is related to McCabe’s cyclomatic com-
plexity [10]. Cyclomatic complexity characterizes method bodies consisting of
basic blocks, we characterize programs consisting of methods and entire loops.
Note that McCabe also defines a measure he calls “essential complexity”, ev,
which, however, is very different from our notion of essence. His ev measures
the unstructuredness of a control-flow graph. Structured control-flow graphs,
no matter how high their cyclomatic complexity, have ev = 1. Thus, essence is
closer to McCabe’s cyclomatic complexity, with the difference that we focus on
repetitions (instead of all branches) and that we include recursion (which, as
our results show, is a major contribution to the complexity of modern software
systems).

Bloat. To some degree, essence could be considered a dual to bloat [11]: bloat
focuses on unnecessary transformations of data, while we identify algorithmically
inessential code.

7.2 Empirical Correlation with Existing Metrics

The above section discussed the relationship between relative essence and well
known metrics on a conceptual level. In this section we empirically determine
the correlation of relative essence with design metrics as computed by existing
tools.

We believe that relative essence may be a surrogate for design pattern density.
However, given the absence of an automatic approach to measuring design pat-
tern density, we are not able to validate that hypothesis other than by argument.
As we have shown in Section 6.3, the introduction of most design patterns re-
duces relative essence, and no pattern generally increases relative essence. Thus,
at least for the “Gang of Four” patterns, we have reason to believe that pattern
density is inversely correlated with relative essence.

Unlike design pattern density, many other design metrics can be computed
automatically. However, as Lincke et al. [9] have shown, metric definitions can be
ambiguous, and different metrics measurement tools often interpret metrics def-
initions differently. To make our comparison unambiguous we computed design
metrics using four open-source tools: CyVis9 for cyclomatic complexity, JDe-
pend10 for object-oriented design metrics, ckjm11 for the Chidamber-Kemerer [4]
metrics, and Dependency Finder12 for more basic object-oriented metrics. Our
study involved 137 metrics. These include metrics computed for each of the
211507 classes, each of the 11018 packages, or each of the 133 applications in our
corpus13. We found that none of the existing metrics are correlated with relative
essence. Cyclomatic complexity shows the closest correlation, with a Pearson’s
product moment correlation coefficient r=0.49. As a rule of thumb, correlation

9 http://cyvis.sourceforge.net/
10 http://www.clarkware.com/software/JDepend.html
11 http://www.spinellis.gr/sw/ckjm/
12 http://depfind.sourceforge.net/
13 The complete results are available at http://sape.inf.usi.ch/essence/metrics.
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coefficients with an absolute value below 0.6 or 0.7 are considered uncorrelated.
Figure 7 shows a scatterplot of cyclomatic complexity versus relative essence. It
includes a regression line with a positive slope. Each class corresponds to an in-
dividual data point. The figure confirms that the correlation between cyclomatic
complexity and relative essence is rather weak.
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Fig. 7. Relative essence vs. cyclomatic complexity, class granularity: r = 0.49

The second metric, the only other metric with |r| > 0.4, is the number
of local variables per method. The fact that classes with more local variables
per method also show a higher relative essence makes intuitive sense, because
methods involving loops or recursion often include local variables.

For all other metrics, |r| lies below 0.3. This includes metrics like coupling
and cohesion. In particular Chidamber-Kemerer’s LCOM (lack of cohesion of
methods) is entirely uncorrelated with relative essence (r=0.026).

8 Discussion

In this paper we introduced a novel structure, the loop call graph, and two met-
rics derived from that structure, absolute and relative essence. We have explained
the intuition behind our approach, and we related it to code smells, refactorings,
design patterns, and existing design metrics. In this section we discuss potential
uses of the loop call graph and essence metrics, as well as the limitations of our
approach.



XXIII

8.1 Usage Scenarios

This paper lays the foundation for approaches and tools that analyze and im-
prove systems based on the amount of indirection, modularization, or informa-
tion hiding in those systems.

Deviation from reference. We believe a good use of our metric is to
measure the essence of systems, and to compare it to a reference value of a
system of high design quality (such as JUnit and JHotDraw). This is similar to
uses of existing design metrics for quality control, where tools produce reports
on violations based on a configurable range of admissible metric values. A high
essence is indicative of a monolithic design that lacks the structure necessary
for good understandability and maintainability. A low essence is indicative of an
“overdesigned” system with excessive indirections, or of a system that consists
mostly of glue connecting other systems together.

Problem localization. Besides a mere metric to flag potential problems,
our approach also provides a representation (the loop call graph) that helps in
locating the sources of the problem. In our own first uses of loop call graphs of
student programs, we have found that for small programs (with tens of methods)
a node-link diagram visualization, where essential nodes are highlighted, helps
to quickly spot clusters of nodes with particularly high or low essence. Given
that essence can be computed on any subgraph of the whole-program loop call
graph, future approaches could automatically identify connected subgraphs with
particularly high or low relative essence, and present these subgraphs to the
developer as regions with bad smells. This would avoid the problem of visualizing
loop call graphs of realistic programs, with their tens or hundreds of thousands
of nodes.

Refactoring recommendation. We can group refactorings into three classes
according to their impact on relative essence: refactorings that increase, do not
affect, or decrease relative essence. Thus, the relative essence of a given sub-
system could guide recommendations on which refactorings to perform. This
would help to better modularize those subsystems with abnormally high relative
essence, and to eliminate unnecessary indirections in subsystems with abnor-
mally low relative essence.

Quality and process attribute prediction. Is it possible to predict pro-
cess attributes, such as error rates or times to fix an error, based on our metric?
Our hypothesis is that the distance of a system’s essence from the essence of a
reference system might be a predictor for various external product quality and
process attributes. We would like to study this connection in future work.

8.2 Limitations

A main limitation of our approach is the mismatch between Brooks’ inten-
sional definition of essence, and our operational definition based on loop call
graph nodes: (1) In a loop call graph, not all (inessential) non-recursive method
nodes represent purely accidental complexity. Clearly, some methods do provide
a meaningful algorithmic contribution even if they are not recursion headers
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and do not contain loops. (2) Not all (essential) recursion headers and loops
are necessarily required for solving the problem the program needs to solve. A
program may contain unnecessary algorithmic computations, or it may contain
overly complex algorithms for a given problem. In general, we believe that any
operational (and thus automatically measurable) definition of essence will be un-
able to determine with absolute certainty that a given piece of code is essential
according to Brooks’ intensional definition. However, we believe that our ap-
proach, while imperfect, is the first to try to quantify this fundamental property,
and that it comes close to the intensional definition. By focusing on repetition
we focus on the backbone of any algorithm, and we provide (as our results in
Section 6 show), a metric that directly relates to design patterns, code smells,
and refactorings.

9 Conclusions

While design metrics like coupling and cohesion provide hints for which parts
of the system to move where, our new metric, essence, provides hints on which
parts of the system to remove, and where to add extra indirections. Essence is
a measure of the absence of indirection, layering, encapsulation, or delegation
in a system. All of these aspects can positively affect software qualities such as
modularity and understandability, however, too much indirection (and thus too
little essence) can be an indication of over-engineered systems or even cruft.

Our metric, essence, is an internal product metric. To measure it, we only
require the source or binary code of a software system. Essence is simple, precise,
and can be measured automatically. It is based on the counts of well known and
intuitive concepts: methods, loops, and the headers of recursive cycles in the
call graph. Moreover, it can be efficiently computed. It took roughly 3 hours
to calculate essence across the entire set of analyzed applications. Essence is a
principled metric. It is based on the principle that loops and recursions are the
only constructs that can increase the computational complexity of an algorithm.
For this reason, any implementation of an algorithm will contain a “backbone”
consisting of loops and recursions. By identifying loops and recursions, we can
thus identify algorithmically essential parts of a program.

We have studied essence in the largest open corpus of software systems we
are aware of, we have found that essence is not correlated to any existing design
metrics, and we have found that essence is tightly related to design pattern
density, to code smells, and to refactoring.
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